Answer:
The reaction is exothermic (option 4)
Explanation:
P4 + 5O2 → P4O10 + 712 kcal
In chemical reactions heat can be absorbed or released:
⇒in the first case, when heat is absorbed, this is called an endothermic reaction. The products have more energy than the reactants. The reaction requires or absorbs energy from it's surroundings. That means that in this reaction energy , in the form of heat, will be absorbed by the reactants.
⇒ when heat is released, this is called an exothermic reaction. The reactants have more energy than the products. The reaction gives or releases energy to it's surroundings. That means that in this reaction energy , in the form of heat, will be released by the reactants.
in the case of P4 + 5O2 → P4O10 + 712 kcal
We notice that on the right side, which is the product side, there is a positive amount of energy. This means that the energy is released by the the reactants, in this reaction. <u>The reaction is exothermic.</u>
.
Answer:
According to Coulomb’s law, the Ca and Se ions have 4 times the attractive force (2+ × 2-) than that of the K and Br ions (1+ × 1-).
Explanation:
From Coulomb's law, the attractive force between calcium and selenium ions is four times the attractive force between potassium and bromide ions.
This has something to do with size and magnitude of charge. Calcium ions and selenide ions are smaller and both carry greater charge magnitude than potassium and bromide ions. This paves way for greater electrostatic attraction between them when the distance of the charges apart is minimal. Hence a greater lattice energy.
Answer: Using a fan on a hot summer day. Explanation: the sweat that our body produces is for effective heat transfer. ...
Radiators in fridges, acs and automobiles. ...
Instant water heating geysers or any other geysers.
Explanation:
Answer:8
in the respiratory system
a.
Explanation:
Answer:
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.
Explanation: