Answer:

Explanation:
The energy absorbed by the water is the energy it requires to evaporate. So:

The moles of water:

M is the water molecular weight


The energy absorbed:


The answer is F, or Fluorine.
Because of Fluorine's high reactivity, it is never found in nature.
The answer is F.
Answer:

Explanation:
Hello!
In this case, since these calorimetry problems are characterized by the fact that the calorimeter absorbs the heat released by the combustion of the substance, we can write:

Thus, given the temperature change and the total heat capacity, we obtain the following total heat of reaction:

Now, by dividing by the moles in 1.04 g of cyclopropane (42.09 g/mol) we obtain the enthalpy of combustion of this fuel:

Best regards!
Explanation:
When there occurs sharing of electrons between two chemically combining atoms then it forms a covalent bond. Generally, a covalent bond is formed between two non-metals.
An ionic bond is defined as the bond formed due to transfer of one or more number of electrons from one atom to another. An ionic bond is always formed between a metal and a non-metal.
Every atom of an element will have orbitals in which electrons are found. These orbitals are known as energy level.
A molecule is defined as the smallest particle present in a substance or atom.
A metallic bond is formed due to mobile valence electrons shared by positive nuclei in a metallic crystal.
Thus, we can conclude that given statements are correctly matched as follows.
1). a chemical bond formed by the electrostatic attraction between ions - ionic bond
2). a chemical bond formed by two electrons that are shared between two atoms - covalent bond
3). the orbitals of an atom where electrons are found - energy level
4). the smallest particle of a covalently bonded substance - molecule
5). a bond characteristic of metals in which mobile valence electrons are shared among positive nuclei in the metallic crystal - metallic bond
Answer:
9.2
Explanation:
Let's do an equilibrium chart of this reaction:
2NO(g) + O₂(g) ⇄ 2NO₂(g)
4.9 atm 5.1 atm 0 Initial
-2x -x +2x Reacts (stoichiometry is 2:1:2)
4.9-2x 5.1-x 2x Equilibrium
The mole fraction of NO₂ (y) can be calculated by the Raoult's law, that states that the mole fraction is the partial pressure divided by the total pressure:
y = 2x/(4.9 - 2x + 5.1 -x + 2x)
0.52 = 2x/(10 - x)
2x = 5.2 -0.52x
2.52x = 5.2
x = 2.06 atm
Thus, the partial pressure at equilibrium are:
pNO = 4.9 -2*2.06 = 0.78 atm
pO₂ = 5.1 - 2.06 = 3.04 atm
pNO₂ = 2*2.06 = 4.12 atm
Thus, the pressure equilibrium constant Kp is:
Kp = [(pNO₂)²]/[(pNO)²*(pO₂)]
Kp = [(4.12)²]/[(0.78)²*3.04]
Kp = [16.9744]/[1.849536]
Kp = 9.2