To solve this problem, separate it into chunks that you know. You know that there are 2.54 centimeters in 1 inch. You know that there are 100 centimeters in 1 meter. You know that there are 1000 meters in a kilometer. Therefore, we'll convert in this order: 1) from kilometers to meters, 2) from meters to centimeters, and 3) from centimeters to inches.
1) 1km × 1000m/1km
= 1000m
2) 1000m × 100cm/1m
= 100000cm
3) 100000cm × 1in/2.54cm
≈ 39370in
So, there are approximately 39370 inches in a kilometer.
Answer:
8.3
Explanation:
pH is the measure of the H+ or H30 (they r the same thing) ions in a solution. it is equal to -log[H+]. [H+]= Molar concentration of H+ ions.
Explanation:
A metal with one valence electron is highly reactive compared to those with more than one electron.
Atoms including those of metals reacts in order attain a stable electronic configuration just like those of noble gases.
An atom with one valence electron have just one electron in its valence shell.
- Metals generally have large sizes.
- when the electron in this shell is lost, the metal atom can then attain stability.
- therefore, such atom will quickly want to combine with any other willing to accept the electron so that they can be stable.
- Those with more than one electron will find it difficult to lose them.
- It requires huge energy to remove such electrons compared to the ones with only one valence electron.
learn more:
Valence electrons brainly.com/question/3023499
#learnwithBrainly
Formula mass, molar mass and Avagadro's number.
Explanation:
number of atoms in a compound can be calculated by knowing the molar mass of the compound or element, the result will be multiplied by avagadro's number (6.022*10^23)
1 mole of a substance is equal to Avagadro number of atoms.
If the number of moles is known of a compound or element its molar mass can be calculated as:
n= Weight of the compound/element given/ molecular weight of the same.
formula mass is the mass of compound ie chemical compound formed with different molecules. its mass is calculated by adding the molar masses of all the elements taking part in its assembly.