1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
14

The Ha line of the Balmer series is emitted in the transition from n-3 to n 2. Compute the wavelength of this line for H and 2H.

[Note: These are the electronic hydrogen and deuterium atoms, not the muonic forms.]
Physics
1 answer:
Citrus2011 [14]3 years ago
5 0

Explanation:

According to Rydberg's formula, the wavelength of the balmer series is given by:

\frac{1}{\lambda}=R(\frac{1}{2^2}-\frac{1}{3^2})

R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:

R=\frac{R_{\infty}}{(1+\frac{m_e}{M})}

Here, R_{\infty} is the "general" Rydberg constant, m_e is electron's mass and M is the mass of the atom nucleus

For hydrogen, we have, M=1.67*10^{-27}kg:

R_H=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{1.67*10^{-27}kg})}\\R_H=1.09677*10^7m^{-1}

Now, we calculate the wavelength for hydrogen:

\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm

For deuterium, we have M=2(1.67*10^{-27}kg):

R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm

You might be interested in
Hoover Dam on the Colorado River is the highest dam in the United States at 221m, with a power output of 680 MW. The dam generat
Phantasy [73]

Answer:

<u> Power = 9.75 ×10^8\frac{kgm^2}{s^3}</u>

Explanation:

  • Power is rate of change of energy.
  • Here gravitational energy is transferred to kinetic energy of water at a definite rate.

For one second 650m^3 of water flows out down to 150m oh depth.

So, the energy at a height of 150m is transformed to kinetic energy.

for a second,

       650m^3 of water flows down ⇒ (1000kg/m^3 × 650m^3) = 6.5×10^5kg of warer flos down.

The total gravitational potential energy stored in water is

    = <u>mass of water × height× gravity</u>

    = 6.5 ×10^5 × 150 × 10 =  9.75 ×10^8\frac{kgm^2}{s^2}

As it is transformed in a second it is also equal to <u>Power.</u>

4 0
3 years ago
Read 2 more answers
High pressure center of dry air
Virty [35]
Anticyclone is the high pressure center of dry air
5 0
3 years ago
Read 2 more answers
A 120-kg object and a 420-kg object are separated by 3.00 m At what position (other than an infinitely remote one) can the 51.0-
djverab [1.8K]

Answer:

1.045 m from 120 kg

Explanation:

m1 = 120 kg

m2 = 420 kg

m = 51 kg

d = 3 m

Let m is placed at a distance y from 120 kg so that the net force on 51 kg is zero.

By use of the gravitational force

Force on m due to m1 is equal to the force on m due to m2.

\frac{Gm_{1}m}{y^{2}}=\frac{Gm_{2}m}{\left ( d-y \right )^{2}}

\frac{m_{1}}{y^{2}}=\frac{m_{2}}{\left ( d-y \right )^{2}}

\frac{3-y}{y}=\sqrt{\frac{7}{2}}

3 - y = 1.87 y

3 = 2.87 y

y = 1.045 m

Thus, the net force on 51 kg is zero if it is placed at a distance of 1.045 m from 120 kg.

6 0
3 years ago
What is the main function of chloroplasts?
dangina [55]

Answer:

C

To convert sunlight into usable sugars

(

Explanation:

6 0
3 years ago
A spherical capacitor is formed from two concentric sphericalconducting shells separated by vacuum. The inner sphere has radius1
zubka84 [21]

Explanation:

(1).  Formula to calculate the potential difference is as follows.

       \Delta V = -\int E dr

                  = -\int \frac{kq}{r^{2}} dr

                 = \frac{kq}{r_{f}} - \frac{kq}{r_{i}}

                 = \frac{kq(r_{f} - r_{i})}{r_{f}r_{i}}

                 = \frac{9 \times 10^{9} \times 3.30 \times 10^{-9}(0.1 - 0.015)}{0.1 \times 0.015}

                = 38.7 volts

Therefore, magnitude of the potential difference between the two spheres is 38.7 volts.

(2).  Now, formula to calculate the energy stored in the capacitor is as follows.

           E = \frac{1}{2}QV

              = \frac{1}{2} \times 3.30 \times 10^{-9} \times 3.87 V

              = 6.39 \times 10^{-8} J

Thus, the electric-field energy stored in the capacitor is 6.39 \times 10^{-8} J.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A particle is being accelerated through space by a 10 N force. Suddenly the particle encounters a second of 10 N force in the op
    6·1 answer
  • The speed of light in water is 2.25 x 108 m/s. What is true about the index of refraction of water? A. It is less than 1. B. It
    11·2 answers
  • A car heading north collides at an intersection with a truck of the same mass as the car heading east. If they lock together and
    5·1 answer
  • When one object pushes or pulls another object the first object is
    8·1 answer
  • The behaviors that light exhibits are reflection, refraction, diffraction, polarization, and dispersion. Answer
    11·1 answer
  • 6. A snowball that will be used to build a snowman is at the top of the only hill in town and weighs 22
    8·1 answer
  • a force of magnitude 30 n stretches a spring 0.83 m from equilibrium. what is the value of the spring constant?
    10·1 answer
  • a camera with a 100mm lens can be used to focus objects from 6pm to infinity onto screen. how much must the lens be moved to foc
    13·1 answer
  • What distinguishes a nebula and a star?
    14·1 answer
  • A piece of wood that floats on water has a mass of 0.0175 kg. A lead sinker is tied to the wood, and the apparent mass with the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!