Given :
Walk in forward direction is 30 m .
Walk in backward direction is 25 m .
To Find :
The distance and displacement .
Solution :
We know , distance is total distance covered and displacement is distance between final and initial position .
So , distance travelled is :
D = 30 + 25 m = 55 m .
Now , we first move 30 m in forward direction and then 25 m in backward direction .
So , displacement is :
D = 30 - 25 m = 5 m .
Therefore , distance and displacement covered is 55 m and 5 m respectively .
Hence , this is the required solution .
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean
Answer b protons and electrons
Answer:
11, 760 Pa.
Explanation:
By applying formula P= pgh, where P is pressure, p is density, g is gravitational acceleration (9.8 m\s2) and h is height of water level. Putting values in the formula, you can have the correct answer.