Answer:
18600j
Explanation:
It is given that,
Number of moles = 3
Temperature, T = 25°C = 25+273 = 298 K
The internal energy of N₂ gas is given by :
U=f\times nRTU=f×nRT
f is degrees of freedom. For diatomic gas, degree of freedom is equal to 5/2. So,
\begin{gathered}U=\dfrac{5}{2}\times 3\times 8.31\times 298\\\\U=18572.85\ J\end{gathered}
U=
2
5×3×8.31×298
U=18572.85 J
or
U = 18600 J
So, the internal energy of the gas is 18,600 J
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
The right answer is
all of the above
good luck
Answer:
toward the center
Explanation:
Before answering, let's remind the first two Newton Laws:
1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force
2) An object acted upon a net force F experiences an acceleration a according to the equation

where m is the mass of the object.
In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).
So, the correct answer is
toward the center