The empirical formula of compounds formed from the given ions are as follows:
- Pb⁴⁺ = PbO₂
- NH₄⁺ = NH₄Cl
- CrO₄²⁻ = Na₂CrO₄
- SO₄²⁻ = K₂SO₄
<h3>What is the empirical formula of a compound?</h3>
The empirical formula of a compound is the simplest formula of the compound showing the simplest ratios in which elements in the compound combine.
The empirical formula of compounds formed from the given ions are as follows:
- Pb⁴⁺ = PbO₂
- NH₄⁺ = NH₄Cl
- CrO₄²⁻ = Na₂CrO₄
- SO₄²⁻ = K₂SO₄
In conclusion, the empirical formula is the simplest formula of a compound.
Learn more about empirical formula at: brainly.com/question/1581269
#SPJ1
When acids react with water, H ions are released which then combine with water molecules to form H₃O⁺
Explanation:
<h3>Conclusion. A good friendship is very difficult to come across. That is why we should appreciate this divine relationship that is based on understanding and feelings. ... A true friend is one of the most precious possessions that one can have in his life.</h3>
Hope it's helpful for Yuh bro!!
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>