Explanation:
Let omega = angular velocity (in rad/s). Then
omega = (# of oscillations)/(6 s)
= (30 osc)/(6 s) = 5 osc/s
We need to convert this to rad/s:
omega = (5 osc/s)(2π rad/osc)
= 10π rad/s
= 31.4 rad/s
1A)
x=v0x*t=v0cosθ*t
x=52co31*3.2=142.6 m
1B)
y0=1/2gt^2-v0y*t=1/2gt^2-v0sinθt
y=0.5*9.8*3.2^2-52*sin31*3,2=23.4 m
2A)
x=2v0^2sin(2θ)/g
v0=[xg/2sin(2θ)]^1/2=14.4 m/s
the initial speed relative to the ground is
v=v0-4.4=10 m/s
2B)
fly time is
t=2voy/g
t=2*14.4/9.8=2.94
2C)
mgy=1/2mv0y^2
y=v0y^2/(2g)=10.58 m
You didn't actually include the speed of sound. But it doesn't matter for this question. If the trumpeter and the listener are on the same moving sidewalk then the distance between them is not changing. The Doppler shift only happens when the distance between the source and the Observer is changing. So the Listener hears the same 290 Hertz that the trumpeter is generating.
There is a net force of 15N in The direction of Levi