Answer:
a) ![\Delta{t} = 5.39s](https://tex.z-dn.net/?f=%5CDelta%7Bt%7D%20%3D%205.39s)
b) the motorcycle travels 155 m
Explanation:
Let
, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):
![v_{m2}=v_0+a\Delta{t}\\x+d=(\frac{v_0+v_{m2}}{2} )\Delta{t}\\v_c = v_0 = \frac{x}{\Delta{t}}](https://tex.z-dn.net/?f=v_%7Bm2%7D%3Dv_0%2Ba%5CDelta%7Bt%7D%5C%5Cx%2Bd%3D%28%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%20%29%5CDelta%7Bt%7D%5C%5Cv_c%20%3D%20v_0%20%3D%20%5Cfrac%7Bx%7D%7B%5CDelta%7Bt%7D%7D)
where:
is the speed of the motorcycle at time 2
is the velocity of the car (constant)
is the velocity of the car and the motorcycle at time 1
d is the distance between the car and the motorcycle at time 1
x is the distance traveled by the car between time 1 and time 2
Solving the system of equations:
![\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcar%26motorcycle%5C%5Cx%3Dv_0%5CDelta%7Bt%7D%26x%2Bd%3D%28%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%7D%29%20%5CDelta%7Bt%7D%5Cend%7Barray%7D%5Cright%5D)
![v_0\Delta{t}=\frac{v_0+v_{m2}}{2}\Delta{t}-d \\\frac{v_0+v_{m2}}{2}\Delta{t}-v_0\Delta{t}=d\\(v_0+v_{m2})\Delta{t}-2v_0\Delta{t}=2d\\(v_0+v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\(2v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\a\Delta{t}^2=2d\\\Delta{t}=\sqrt{\frac{2d}{a}}=\sqrt{\frac{2*58}{4}}=\sqrt{29}=5.385s](https://tex.z-dn.net/?f=v_0%5CDelta%7Bt%7D%3D%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%5CDelta%7Bt%7D-d%20%5C%5C%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%5CDelta%7Bt%7D-v_0%5CDelta%7Bt%7D%3Dd%5C%5C%28v_0%2Bv_%7Bm2%7D%29%5CDelta%7Bt%7D-2v_0%5CDelta%7Bt%7D%3D2d%5C%5C%28v_0%2Bv_0%2Ba%5CDelta%7Bt%7D%29%5CDelta%7Bt%7D-2v_0%5CDelta%7Bt%7D%3D2d%5C%5C%282v_0%2Ba%5CDelta%7Bt%7D%29%5CDelta%7Bt%7D-2v_0%5CDelta%7Bt%7D%3D2d%5C%5Ca%5CDelta%7Bt%7D%5E2%3D2d%5C%5C%5CDelta%7Bt%7D%3D%5Csqrt%7B%5Cfrac%7B2d%7D%7Ba%7D%7D%3D%5Csqrt%7B%5Cfrac%7B2%2A58%7D%7B4%7D%7D%3D%5Csqrt%7B29%7D%3D5.385s)
For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:
![x = v_0\Delta{t}= 18\sqrt{29}=96.933m\\then:\\x+d = 154.933](https://tex.z-dn.net/?f=x%20%3D%20v_0%5CDelta%7Bt%7D%3D%2018%5Csqrt%7B29%7D%3D96.933m%5C%5Cthen%3A%5C%5Cx%2Bd%20%3D%20154.933)