Iodine has 7 valence electrons. It needs therefore only 1 electron to be stable this is why it is so reactive.
The volume of 0.555M KNO3 solution would contain 12.5 g of solute iss 223 mL.
<h3>What is the relationship between mass of solute and concentration of solution?</h3>
The mass of solute in a given volume of solution is related by the formula below:
- Molarity = mass/(molar mass * volume)
Therefore, volume of solution is given by:
Volume = Mass /molarity * molar mass
Molar mass of KNO₃ = 101 g/mol
Volume = 12.5/(0.555 * 101)
Volume = 0.223 L or 223 mL
In conclusion, the volume of the solution is obtained from the molarity of solution as well as mass and molar mass of solute.
Learn more about molarity and volume at: brainly.com/question/26873446
#SPJ1
Thermal energy transfers in a solid state, due to convection, in metalic substances.
This is because the covalent bonds between the atoms are being broken and reformed again while the metal is experiencing stress. <em>covalent bonds store energy. </em>
Answer:
gametes have to become haploid - they have to reduce their genetic material to a single copy, while somatic cells are diploid
Explanation:
Answer : The balanced equations will be:

Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
Now we have to determine the balanced equations corresponding to the following rate expressions.
![Rate=-\frac{d[CH_4]}{dt}=-\frac{1}{2}\frac{d[O_2]}{dt}=+\frac{1}{2}\frac{d[H_2O]}{dt}=+\frac{d[CO_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BCH_4%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BCO_2%5D%7D%7Bdt%7D)
The balanced equations will be:
