This is an example of refraction.
i hope this helps
Answer:
When you ask a question, only two people can answer. When there are two answers, a little crown should appear at the bottom right hand corner. All you have to do is click the crown and it gives Brainliest. But you can only give it to one person per question
Explanation:
Take into account that density and relative density are given by:

Take into account that the volume associated to each of the given sustances in the table is determined by the Level Difference (because it is the change in the volume of the water of the recipient in which the substance is immersed).
The density of water in kg/m^3 is 1000 kg/m^3.
Due to the density must be given in kg/m^3, it is necessary to express the volumes of the table in m^3 and mass in kg, then, consider the following conversion factor:
1 m^3 = 1000000 ml
1 kg = 1000 g
Then, you obtain the following results:
Brass:

Cooper:
Answer:
The capacite is C=5.32 uF using the equations of voltage and energy in capacitance
Explanation:
The energy holds is 5 J and the resistor dissipates 2J so the energy total is 3J
Using:

Voltage in this case is the energy dissipated so



Using the equation to find capacitance

F
C= 5.32 uF because u is the symbol for micro that is equal to 
Answer:
a) v = 88.54 m/s
b) vf = 26.4 m/s
Explanation:
Given that;
m = 1400.0 kg
a)
by using the energy conservation
loss in potential energy is equal to gain in kinetic energy
mg × ( 3200-2800) = 1/2 ×m×v²
so
1400 × 9.8 × 400 = 0.5 × 1400 × v²
5488000 = 700v²
v² = 5488000 / 700
v² = 7840
v = √7840
v = 88.54 m/s
b)
Work done by all forces is equal to change in KE
W_gravity + W_non - conservative = 1/2×m×(vf² - vi²)
we substitute
1400 × 9.8 × ( 3200-2800) - (5 × 10⁶) = 1/2 × 1400 × (vf² -0 )
488000 = 700 vf²
vf² = 488000 / 700
vf² = 697.1428
vf = √697.1428
vf = 26.4 m/s