1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
3 years ago
7

The Moon's center is 3.9x10 m from Earth's center. The Moon is 1.5x10^8 km from the Sun's center. If the mass of the Moon is 7.3

x10^22 kg, find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon
Physics
1 answer:
nika2105 [10]3 years ago
3 0

Explanation:

It is given that The Moon's center is 3.9x10⁸ m from Earth's center. The moon 1.5x10⁸ km from the Sun's center. We need to find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon.

The gravitational force is given by :

F=\dfrac{Gm_em_m}{r^2}

It means F\propto \dfrac{1}{r^2}

So,

\dfrac{F_1}{F_2}=\dfrac{r_2}{r_1}

r₁ = 3.9x10⁸ km

r₂= 1.5x10⁸ km

So,

\dfrac{F_1}{F_2}=\dfrac{1.5\times 10^8}{3.9\times 10^8}\\\\\dfrac{F_1}{F_2}=\dfrac{5}{13}

Hence, the ratio of the gravitational forces exerted by Earth and the Sun on the Moon is 5:13.

You might be interested in
A .5 kg toy train car moving forward at 3 m/s collides with and sticks to a .8 kg toy car that is traveling at 2 m/s what is the
Viktor [21]
Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:
m_{1} * v_{1} + m_{2} * v_{2} = m_{1} * v'_{1}+ m_{2} * v'_{2}

In case of perfectly inelastic collision v'1 and v'2 are same.

We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x

0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s
4 0
2 years ago
What is the correct classification of a mixture in which both a solid and a liquid are visible?
stepan [7]
<span>The answer is a heterogeneous mixture. Mixtures can be homogeneous and heterogeneous. If a solid and a liquid of a mixture cannot be separated and the difference between them is not visible, it is called homogeneous mixture (or solution). If a solid and a liquid of a mixture are visible and can be separated easily, the mixture is called heterogeneous.</span>
7 0
3 years ago
Read 2 more answers
Which element contains a full 2p orbital in its valence shell
alex41 [277]
So Neon ( Ne) is the correct answer.

3 0
3 years ago
Read 2 more answers
What is the average power consumption in watts of an appliance that uses 5.00 kWh of energy per day? How many joules of energy d
denpristay [2]

Answer:

(A)  power  = 0.208 kW = 208 watts

(B)  energy = 6.6 x 10^{9} joules

Explanation:

energy consumed per day = 5 kWh

(a) find the power consumed in a day

         1 day = 24 hours

        power = \frac{energy}{time}

        power = \frac{5}{24}

          power  = 0.208 kW = 208 watts

         

(b) find the energy consumed in a year

    assuming it is not a leap year and number of days = 365 days

     1 year = 365 x 24 x 60 x 60 = 31,536,000 seconds

            energy = power x time

            energy = 208 x 31,536,000

            energy = 6.6 x 10^{9} joules

5 0
3 years ago
Air enters a turbine operating at steady state with a pressure of 75 Ibf/in.^2, a temperature of 800º R and velocity of 400 ft/s
Arturiano [62]

Answer:

(a) W/m = 49.334 Btu/lb

(b) \frac{E_{d} }{m} = 22.12 Btu/lb

Explanation:

For the given problem, it can be assumed that the system is operating at steady state and the effects of potential energy can be neglected.

(a) Using the thermodynamic table for air.

At the temperature (T_{1})of 800 ºR and pressure (P_{1}) of 75 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{1}) = 191.81 BTu/lb

Specific entropy (s_{1}) = 0.6956 Btu/(lb.ºR)

At the temperature (T_{2})of 600 ºR and pressure (P_{2}) of 15 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{2}) = 143.47 BTu/lb

Specific entropy (s_{2}) = 0.6261 Btu/(lb.ºR)

The work done can be calculated using energy rate equation:

\frac{W}{m} = \frac{Q}{m} + (h_{1} - h_{2}) + \frac{V_{1}^{2} - V_{2}^{2}}{2}

Q/m = heat transfer = -2 Btu/lb

V_{1} = 400 ft/s

V_{2} = 100 ft/s

\frac{W}{m} = -2 + (191.81 - 143.47) + \frac{400^{2} - 100^{2}}{2}*[tex]\frac{1}{2*32.2*778}[/tex] = -2 + 48.34 + 29.938 = 49.334 Btu/lb

(b) To calculate the exergy destruction, we will use the equation for exergy rate:

\frac{E_{d} }{m} = [1-\frac{T_{o} }{T_{b} }](\frac{Q}{m}) - \frac{W}{m} + [(h_{1} - h_{2}) -T_{o}(s_{1} - s_{2}) + \frac{V^{2} _{1} - V_{2} ^{2}}{2}]

The equation above is further simplified to:

\frac{Ed}{m} = T_{o}[(s_{2} -s_{1}) - Rln\frac{P_{2} }{P_{1} } - \frac{Q/m}{T_{b} }]

Using a reference temperature (To) = 500 °R

Average surface temperature (Tb = 620°R

\frac{Ed}{m} = 500*[(0.6261 -0.6956) - (1.986/28.97)ln\frac{15 }{75 } - \frac{-2}{620}}]

\frac{E_{d} }{m} = 500*[-0.0695 +0.068688*1.609 +0.003225] = 22.12 Btu/lb

5 0
3 years ago
Other questions:
  • Which characteristics do all terrestrial planets have?
    13·2 answers
  • A uniform, thin, solid door has height 2.20 m, width 0.870 m, and mass 23.0 kg. (a) find its moment of inertia for rotation on i
    13·1 answer
  • For a spring oscillating in simple harmonic motion, at what point will the velocity of
    9·1 answer
  • Suppose two masses labelled m1 and m2, are speeding toward each other at time t=0s. The first mass 1 has a mass and speed has va
    10·1 answer
  • Flooding on rivers is caused by human activity rather than natural events. Please select the best answer from the choices provid
    8·2 answers
  • Explain why the direction of the south equatorial current changes
    7·1 answer
  • Why does a round pizza come in a square box? Random questions
    5·2 answers
  • A Porter carries a 25 kg suitcase a distance of 1 km. Explain why the Porter does no work
    14·1 answer
  • A vertical spring gun is used to launch balls into the air. If the spring is compressed by 4.9 cm, the ball of mass 5.5 g is lau
    13·1 answer
  • The amplitude of a wave<br> determines the volume of a<br> sound.<br> True<br> O False
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!