1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
14

Bettina spoke into a microphone during the school play to increase the sound of her voice so the audience could hear her speak.

The loudness of Bettina’s voice was changed by what type of energy?
Physics
2 answers:
grandymaker [24]3 years ago
7 0
The loudness was increased by the amplifier which converted electrical energy into sound energy.
Sati [7]3 years ago
5 0

C.) Electric Energy

You might be interested in
At take off a plane flies 100 km north before turning east to fly 200 km east. How far is its destination from where the plane t
andrew-mc [135]

First the plane turns 100 km North, and than 200 km East. Since both the directions are perpendicular to each other, therefore we can apply the Pythagoras theorem to calculate the distance between the destination and the point where plane took off


=100^{2}+200^{2}

D=223.60 km=224 km

Therefore, The destination is 224 km from where the plane took off


8 0
3 years ago
How to calculate kinetic energy given mass and velocity
sashaice [31]

In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.

3 0
2 years ago
A key falls from a bridge that is 32 m above the water. It falls directly into a model boat, moving with constant velocity, that
FinnZ [79.3K]

Answer:

Speed of the boat, v = 4.31 m/s

Explanation:

Given that,

Height of the bridge, h = 32 m

The model boat is 11 m from the point of impact when the key was released, d = 11 m

Firstly, we will find the time needed for the boat to get in this position using second equation of motion as :

s=ut+\dfrac{1}{2}at^2

Here, u = 0 and a = g

t=\sqrt{\dfrac{2s}{g}}

t=\sqrt{\dfrac{2\times 32}{9.8}}

t = 2.55 seconds

Let v is the speed of the boat. It can be calculated as :

v=\dfrac{d}{t}

v=\dfrac{11\ m}{2.55\ s}

v = 4.31 m/s

So, the speed of the boat is 4.31 m/s. Hence, this is the required solution.

3 0
3 years ago
022 (part 1 of 4) 10.0 points A ball is thrown vertically upward with a speed of 24.5 m/s. How high does it rise? The accelerati
svetoff [14.1K]

1)

Answer:

Part 1)

H = 30.6 m

Part 2)

t = 2.5 s

Part 3)

t = 2.5 s

Part 4)

v_f = 24.5 m/s

Explanation:

Part 1)

initial speed of the ball upwards

v_i = 24.5 m/s

so maximum height of the ball is given by

H = \frac{v_i^2}{2g}

H = \frac{24.5^2}{2(9.80)}

H = 30.6 m

Part 2)

As we know that final speed will be zero at maximum height

so we will have

v_f - v_i = at

0 - 24.5 = (-9.8)t

t = 2.5 s

Part 3)

Since the time of ascent of ball is same as time of decent of the ball

so here ball will same time to hit the ground back

so here it is given as

t = 2.5 s

Part 4)

since the acceleration due to earth will be same during its return path as well as the time of the motion is also same

so here its final speed will be same as that of initial speed

so we have

v_f = 24.5 m/s

2)

Answer:

a = 9.76 m/s/s

Explanation:

As we know that the object is released from rest

so the displacement of the object in vertical direction is given as

y = \frac{1}{2}at^2

4.88 = \frac{1}{2}a(1^2)

a = 9.76 m/s^2

3)

Answer:

v = 29.7 m/s

Explanation:

acceleration of the rocket is given as

a = 90 m/s^2

time taken by the rocket

t = 0.33 min

final speed of the rocket is given as

v_f = v_i + at

v_f = 0 + (90)(0.33)

v_f = 29.7 m/s

4)

Answer:

Part 1)

y = 25.95 m

Part 2)

d = 6.72 m

Explanation:

Part 1)

As it took t = 2.3 s to hit the water surface

so here we will have

y = \frac{1}{2}gt^2

y = \frac{1}{2}(9.81)(2.3^2)

y = 25.95 m

Part 2)

Distance traveled by it in horizontal direction is given as

d = v_x t

d = 2.92 \times 2.3

d = 6.72 m

6 0
3 years ago
a 2,000-kilogram railroad car moving at 8m/s to the right collides with a 6,000-kilogram railroad car moving at 3m/s to the west
astra-53 [7]

A freight car of mass 20,000 kg moves along a frictionless level railroad track ... After the push the skateboarder II moves with a velocity of 2 m/s to ... After the collision the cars stick to each other and ... diver jumps with a velocity of 3 m/s in opposite ... A 10 kg object moves at a constant velocity 2 m/s to the right and collides

3 0
3 years ago
Other questions:
  • A vertebra is subjected to a shearing force of 535 N. Find the shear deformation, taking the vertebra to be a cylinder 3.00 cm h
    6·1 answer
  • A flowerpot falls from the ledge of an apartment building. A person in an apartment below, coincidentally holding a stopwatch, n
    14·1 answer
  • A silver bar of length 30 cm and cross-sectional area 1.0 cm2 is used to transfer heat from a 100°C reservoir to a 0°C block of
    11·1 answer
  • Need help asap
    10·1 answer
  • The use of a beat or a rhythm to remember something is
    8·2 answers
  • Interactive Solution 9.1 presents a model for solving this problem. The wheel of a car has a radius of 0.380 m. The engine of th
    11·1 answer
  • Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject materia
    15·1 answer
  • Which statement is true for light passing into a medium that is less optically dense than the first medium through which it pass
    7·2 answers
  • Who could explain the phenomenom of interference of light?​
    5·1 answer
  • Day and night are caused by
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!