1) Highly reactive: Nanoparticles are therefore extremely unstable and easily change themselves or react with active substances to reach a relatively stable state in some cases. This causes desired changes or undesired changes to nanoparticles and thus makes them exhibit a high reactivity and a poor stability.
2)Small size: Nanotechnology can provide rapid and sensitive detection of cancer-related molecules, enabling scientists to detect molecular changes even when they occur only in a small percentage of cells. Nanotechnology also has the potential to generate entirely novel and highly effective therapeutic agents.
This question seems to be an essay question from experiment. Different solution of oxidizing agent will have different strength. Sulfuric acid or H2SO4 is weaker oxidizing agent when compared to nitric acid (HNO3). In this case, if you subtitute the H2SO4 you wouldn't be able to get the same result for the experiment.
The chemical formula of the precipitate is Fe(OH)₃
Explanation:
Fe(NO₃)₃ and K₂CO₃ are strong electrolytes and completely dissociate in water. Carbonate ions is a weak base and combine with water to form hydroxide ions (OH⁻), CO₃²⁻ + H₂O <----------------> HCO₃⁻ + OH⁻
Ferric, Fe (III), combines with these hydroxide ions to form insoluble precipitates. Fe(OH)₃ is only partially soluble i.e., it does not completely dissociate in water. When the solutions of Fe(NO₃)₃ and K₂CO₃ are mixed, Fe(OH)₃ precipitates out due to the strong electrostatic attraction between Fe (III) and hydroxide ions.