When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m
The speed of sound at T=25°C is Vs=346 m/s. So the sound has to reach the cliff and return back to you so the path it needs to travel is s=2*440 m = 880 m.
Since the speed of sound is constant s=Vs*t, and t= s/Vs=880/346=2.54335 s. You will hear the echo after t=2.54335 s after you shouted.
Answer:
0.07756 m
Explanation:
Given mass of object =0.20 kg
spring constant = 120 n/m
maximum speed = 1.9 m/sec
We have to find the amplitude of the motion
We know that maximum speed of the object when it is in harmonic motion is given by
where A is amplitude and
is angular velocity
Angular velocity is given by
where k is spring constant and m is mass
So 

Correct answer choice is :
B) Upwarped
Explanation:
An upwarped mountain is a mountain consisting of a large area of the Earth's coat that has led smoothly upward without much visible deformation and normally including sedimentary, igneous, and metamorphic rocks. Sedimentary rocks are set down in layers called beds or layers. A bed is described as a layer of rock that has a similar lithology and character. Beds form by the removal of layers of sand on top of each other.
Construction, like building a home/building, digging, like in a mine, and opening a soda can, where the part to open is a lever.