Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!
Metallic bonding
The particles in a metal are held together by metallic bonds.
High melting and boiling points
Metallic bonds are strong and a lot of energy is needed to break them. This is why metals have high melting points and boiling points.
Conducting electricity
Metals contain electrons that are free to move in the metal structure, carrying charge from place to place and allowing metals to conduct electricity well.
Metallic bonding - Higher tier
Metallic bonding is the strong attraction between closely packed positive metal ions and a 'sea' of delocalised electrons.
Here are the choices:
Warm air rises while cold air falls.
The warmer air contains less water vapor per unit of volume.
The warmer air contains more water vapor per unit of volume.
Moist air has lower density than dry air does.
The best answer is: <em>The warmer air contains more water vapor per unit of volume.
</em>
Volume of H2 produced = 57.6576 L
<h3>Further explanation</h3>
Given
23.17 g Be
Required
Volume of H2
Solution
Reaction
Be(s)+H2O(g)→BeO(s)+H2(g)
mol Be :
= 23.17 g : 9 g/mol
= 2.574
From the equation, mol H2 : mol Be = 1 : 1, so mol H2 = 2.574
Volume H2(assumed at STP, 1 mol=22.4 L) :
= 2.574 x 22.4 L
= 57.6576 L
Answer:
0.35 milli moles of ethanol can be theoretically be produced under these conditions.
Explanation:

Moles of glucose =
milli mole
Moles of ADP = 0.35 milli mole
Moles of Pi = 0.35 milli mole
Moles of ATP = 0.70 milli mole
As we can see that ADP and Pi are in limiting amount which means tat they are limiting reagent. So, the moles of ethanol produced will depend upon the moles of ADP and Pi.
According to reaction, 2 moles of ADP gives 2 moles of glucose.
Then 0.35 milli moles of ADp will give :
of ethanol
0.35 milli moles of ethanol can be theoretically be produced under these conditions.