To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
Explanation:
initial height, yo = 2 m
initial velocity, u = 20 m/s
angle of projection,θ = 5 degree
distance of net = 7 m
height of net = 1 m
Let it covers a vertical distance y in time t .
Use Second equation of motion for vertical motion
As it hits the ground in time t, so put y = 0
Taking positive sign, t = 0.84 s
The ball travels a horizontal distance x in time t
X = 20 Cos5 x t
X = 16.76 m
As this distance is more than the distance of net, so it clears the net.
Let t' be the time taken to travel a horizontal distance equal to the distance of net
7 = 20 cos5 x t'
t' = 0.35 s
Let the vertical distance traveled by the ball in time t' is y'.
So,
y' = 2.008 m
So, it clears the net which is 1 m high.
It clears the net by a vertical distance of 2.008 - 1 = 1.008 m and horizontal distance 16.76 - 7 = 9.76 m
your welcome, and have a great day.
<span>Is it true that nighttime air temperatures on a cloudy night are lower than they would be on a clear night?</span>
Answer:
a.6.5025 J
b.6.5025 J
Explanation:
We are given that
Mass of pellet,m=0.27 g=
1 kg=1000 g
Spring constant,k=1800 N/m
x=8.5 cm=
1m=100 cm
a.Potential energy stored in the compressed spring is given by
P.E=


b.By using law of conservation of energy
P.E of spring=K.E of the pellet
K.E of the pellet=6.5025 J
Answer:
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's
Explanation:
Step 1: Data given
Velocity of the baseball at time t=0 = 38 m/s
At time t, the ball stops. This means v = 0
time before stops = 0.1s
Step 2: Calculate the acceleration
v= v0+at
with v= the velocity of the ball at time t = 0. v= 0
with v0 = the velocity of the ball at time t=0. v0 = 38 m/s
with a= the acceleration in m/s²
with t = time in seconds
0 = 38 + a*0.1
a = -380 m/s²
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's