We can find the volume of a small
pebble with the help of measuring cylinder by using the water displacement
method. <span>The </span>water displacement method<span> <span>is the
process of measuring the volume of an irregularly shaped object by immersing it
in water. </span></span>I am
hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.
An equilibruium is not changed by a changed in pressure. the answer is false
Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]
In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]
Now we can use the first statement to get the first equation:
where:
W₁₋₂ = work from the state 1 to 2.
where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]
We can conclude that star A is closer to us than star B.
In fact, the absolute magnitude gives a measure of the brightness of the star, if all the stars are placed at the same distance from Earth. So, it's a measure of the absolute luminosity of the star, indipendently from its distance from us: since the two stars have same absolute magnitude, it means that if they were at same distance from Earth, they would appear with same luminosity. Instead, we see star A brighter than star B, and the only explanation is that star A is closer to Earth than star B (the closer the star A, the brigther it is)