The lowest constant acceleration needed for takeoff from a 1.80 km runway is 2.8 m/s².
To find the answer, we need to know about the Newton's equation of motion.
<h3>What's the Newton's equation of motion to find the acceleration in term of initial velocity, final velocity and distance?</h3>
- The Newton's equation of motion that connects velocity, distance and acceleration is V² - U²= 2aS
- V= final velocity, U= initial velocity, S= distance and a= acceleration
<h3>What's the acceleration, if the initial velocity, final velocity and distance are 0 m/s, 360km/h and 1.8 km respectively?</h3>
- Here, S= 1.8 km or 1800 m, V= 360km/h or 100m/s , U= 0 m/s
- So, 100²-0= 2×a×1800
=> 10000= 3600a
=> a= 10000/3600 = 2.8 m/s²
Thus, we can conclude that the lowest constant acceleration needed for takeoff from a 1.80 km runway is 2.8 m/s².
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ4
i searched this in googl.e, and there was one website, so i clicked it, and umm it was very disgusting ,,,
I believe the answer is C. It will maintain its state of motion
It will not explode since the mass of the cotton balls is so low but rather will most likely break the lock and hinges and come out.