Answer: Charles's law
Explanation:
Charles's law is one of the gas laws, and it explains the effect of temperature changes on the volume of a given mass of gas at a constant pressure. Usually, the volume of a gas decreases as the temperature decreases and increases as the temperature also increases.
Mathematically, Charles's law can be expressed as:
V ∝ T
V = kT or (V/T) = k
where v is volume, T is temperature in Kelvin, and a k is a constant.
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency

Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula


Hence, The frequency is 302.05 Hz.
The tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
<h3>Principle of moments</h3>
The Principle of Moments states that when a body is in equip, the sum of clockwise moment about a point is equal to the sum of anticlockwise moment about the same point.
The formula for calculating moment is given below:
- Moment = Force × perpendicular distance from the pivot
<h3>Calculating the tension in the chains</h3>
From the principle of moments:
Let tension in chain 1 be T1 and tension in chain 2 be T2.
T1 + T2 = 150 + 650 + 419
T1 + T2 =1219
Taking all distances from chain 1,
Sum of Moments = 0
419 × 0.5 + 150 × 0.85 + 650 × 0.9 = T2 × 1.7
T2 = 922/17
T2 = 542.35 N
Then, T1 = 1219 - 542.35
T1 = 676.65 N
Therefore, the tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
Learn more about tension and moments at: brainly.com/question/187404
brainly.com/question/14303536
Answer: 405.3 minutes
Explanation: In order to explain this problem we have to use the following:
Fisrtly we calculate the volume of the wire, this is given by:
Vwire=π*r^2*L where r and L are the radius and L the length of teh wire, respectively.
Vwire=π*1.25*10^-3*0.26=1.27*10^-6 m^3
then the number of the total electrons in tthe wire volume is given by;
n° electrons in the wire=ρ*Vwire=8.4*10^28*1.27*10^-6 m^3=1.07 *10^23
Finally, considering the current in the wire equal to 4.4*10^18 electrons/s
the time consuming to extract all the electrons from the wire is given by:
t= total electrons in the wire/ current=1.067*10^23/4.4*10^18=24,318 s
equivalent to 405.3 minutes
Answer:
It may be combine?
Do you have multiple choice i can see?
Explanation: