Answer: 22.6 hours
Explanation:
The power is the measure of the rate of energy.
In this problem, the 12.0 V battery is rated at 51.0 Ah, which means it delivers 51.0 A of current in a time of t = 1 h = 3600 s. The power delivered by the battery can be written as

where
I is the current
V = 12.0 V is the voltage of the battery
So the energy delivered by the battery can be written as

Where

So the energy delivered is

At the same time, the headlight consumes 27.0 W of power, so 27 Joules of energy per second; Therefore, it will remain on for a time of:

Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Answer:
B1. Pascal's law is a principal in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid that the same change occur everywhere. 2 applications of Pascal's law are hydraulic lifts, hydraulic jacks, hydraulic hydraulic brakes ,hydraulic pumps. mark me as a braintalist list plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
The moon's orbital and rotational periods are identical or the same, I<span>ts rate of spin is done in unison with its rate of revolution (the time that is needed to complete one orbit). Thus, the moon rotates exactly once every time it circles the Earth.</span>
At a particular location, when an an increase in the rate at which water moves from the hydrosphere to the atmosphere, an increase in humidity is expected at that location. The term "humidity" generally refers to the amount of water vapor in the atmosphere.