Answer:
The force F is created by the reaction of the Earth to the thrust of the rods, whereby the thrust is created by a force of action and reaction.
Explanation:
To answer this question, let's write Newton's second law of the two axes
Y Axis
Fy + N - W = 0
Fy + N = W
X axis
Fx - fr = 0
Fx = fr
The force F is created by the reaction of the Earth to the thrust of the rods, whereby the thrust is created by a force of action and reaction.
The direction of this force is along the length of the rods that are in an Angle, where the x and y components of the force come from
In general this force is small because the rubbing of the skis is small
Answer:
a) The electric field at that point is
newtons per coulomb.
b) The electric force is
newtons.
Explanation:
a) Let suppose that electric field is uniform, then the following electric field can be applied:
(1)
Where:
- Electric field, measured in newtons per coulomb.
- Electric force, measured in newtons.
- Electric charge, measured in coulombs.
If we know that
and
, then the electric field at that point is:


The electric field at that point is
newtons per coulomb.
b) If we know that
and
, then the electric force is:



The electric force is
newtons.
The current is defined as the amount of charge Q that passes through a given point of a wire in a time

:

Since I=500 A and the time interval is

the charge is

One electron has a charge of

, therefore the number of electrons that pass a point in the wire during 4 minutes is

electrons
Answer:
Work= -7.68×10⁻¹⁴J
Explanation:
Given data
q₁=q₂=1.6×10⁻¹⁹C
r₁=2.00×10⁻¹⁰m
r₂=3.00×10⁻¹⁵m
To find
Work
Solution
The work done on the charge is equal to difference in potential energy
W=ΔU
![Work=U_{1}-U_{2}\\ Work=-kq_{1}q_{2}[\frac{1}{r_{2}}-\frac{1}{r_{1}} ]\\Work=(-9*10^{9})*(1.6*10^{-19} )^{2}[\frac{1}{3.0*10^{-15} }-\frac{1}{2*10^{-10} } ]\\ Work=-7.68*10^{-14}J](https://tex.z-dn.net/?f=Work%3DU_%7B1%7D-U_%7B2%7D%5C%5C%20Work%3D-kq_%7B1%7Dq_%7B2%7D%5B%5Cfrac%7B1%7D%7Br_%7B2%7D%7D-%5Cfrac%7B1%7D%7Br_%7B1%7D%7D%20%5D%5C%5CWork%3D%28-9%2A10%5E%7B9%7D%29%2A%281.6%2A10%5E%7B-19%7D%20%29%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B3.0%2A10%5E%7B-15%7D%20%7D-%5Cfrac%7B1%7D%7B2%2A10%5E%7B-10%7D%20%7D%20%5D%5C%5C%20%20Work%3D-7.68%2A10%5E%7B-14%7DJ)
Applicable linear expansion equation:
ΔL = αΔTL
In which
ΔL = change in length, α = Linear expansion coefficient of steel, ΔT = change in temperature, L = original length
Therefore,
ΔL = 12*10^-6*(18.5-(-3))*1410 = 0.36378 m