Answer:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
The ball rotates 6.78 revolutions.
Explanation:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
At the bottom the ball has the following angular speed:

Now, we need to find the distance traveled by the ball (L) by using θ=28° and h(height) = 2 m:
To find the revolutions we need the time, which can be found using the following equation:
(1)
So first, we need to find the acceleration:
(2)
By entering equation (2) into (1) we have:

Since it starts from rest (v₀ = 0):

Finally, we can find the revolutions:

Therefore, the ball rotates 6.78 revolutions.
I hope it helps you!
Answer:
Depends.
Explanation:
Whether the object is going left or right, the speed will stay the same until friction eventually stops it. <em>However, </em>if, for example, we're talking about an object going straight before veering right, then yes, speed <em>does</em> matter. An object will normally have to speed up or slow down momentarily when changing direction to keep itself sustained on the ground.
So, honestly? It really depends on what we're talking about!
Hope this helped!
Source(s) used: None.
B- light bends as it passes through an object ( a would be reflect)
Answer:
TEMPERATURE CHANGES
Explanation:
WELL ITS BASIC. WHEN TEMPERATURE CHANGES. IT MEANS THAT HEAT IS BEING TRANSFERRED AS I HEARD THAT COLD CANNOT BE TRANSFERRED
Answer:
M= F^n / a+g
Explanation:
This shows correctly Newton’s second law, where sum of forces is divided by mass is equal to acceleration. Also mass can’t be negative so F^n is positive.