1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
3 years ago
9

The principles of magnetism apply everywhere on earth. What does this tell us about God and His character?

Physics
1 answer:
Bas_tet [7]3 years ago
3 0

Answer:

God is omnipresent.

Explanation:

This means God is everywhere and He works where ever we are in the world

You might be interested in
Energy that does not involve the large-scale motion or position of objects in a system is called:
Kryger [21]
I believe the answer is C.
4 0
3 years ago
Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible fricti
Bas_tet [7]

Answer:

v = 0.059 m/s

Explanation:

To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:

mv_{1i}+Mv_{2i}=(m+M)v  (1)

m: mass of the ball = 0.400kg

M: mass of Olaf = 75.0 kg

v1i: initial velocity of the ball = 11.3m/s

v2i: initial velocity of Olaf = 0m/s

v: final velocity of Olaf and the ball

You solve the equation (1) for v and replace the values of all variables:

v=\frac{mv_{1i}}{m+M}=\frac{(0.400kg)(11.3m/s)}{0.400kg+75.0kg}=0.059\frac{m}{s}

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s

3 0
3 years ago
Over a 24-hour period, the tide in a harbor can be modeled by one period of a sinusoidal function. the tide measures 5.15 ft at
RSB [31]
<span>f(x) = 5.05*sin(x*pi/12) + 5.15

   First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.

   So our function at this point looks like f(x) = 5.05*sin(x*pi/12) But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
  f(x) = 5.05*sin(x*pi/12) + 5.15

   The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
 f(x) = 5.05*sin(x*pi/12 + C) + 5.15
  where
 C = Phase correction offset.

   But we don't need it for this problem, so the answer is:
 f(x) = 5.05*sin(x*pi/12) + 5.15

   Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
7 0
3 years ago
A car travels across Texas m miles at the rate of t miles per hour. How many hours does the trip take??
Marianna [84]

Answer: The trip takes \frac{m}{t}hours

Explanation:

Velocity V is the variation of the position of a body (distance traveled d) with time T:

V=\frac{d}{T}

In this case, the car travels a distance d=m miles at a velocity V=t \frac{miles}{hour} and we need to find the time it takes the trip.

Isolating  T:

T=\frac{d}{V}=\frac{m miles}{t \frac{miles}{hour}}

Finally:

T=\frac{m}{t}hours

8 0
3 years ago
Which situation is an example of increasing potential energy? Question 4 options: A. a cat jumping from a tree B. pulling a wago
jeka94
Pulling an wagon uphill I believe.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the correctly balanced equation for the reaction of rust, Fe2O3, and hydrochloric acid, HCl?
    15·2 answers
  • The inner planets—mercury, venus, earth, and mars—are believed to have been formed by _____. answers
    11·2 answers
  • Describe how an inclined plane increases the force without changing the amount of work done
    11·1 answer
  • Transistor heating up in tesla coil !!!! please help me.
    7·1 answer
  • A shopper pushes a grocery cart 41.9 m on level ground, against a 44.5 N frictional force. The cart has a mass of 16.3 kg. He pu
    10·1 answer
  • What problem can you imagine coming from using digitized<br> DNA storage?
    11·1 answer
  • Why are many scientists concerned about humans adding large amounts of carbon to the atmosphere by burning fossil fuels (combust
    5·2 answers
  • Another name for Newton’s 2nd law
    11·1 answer
  • A block of mass 4 kilograms is initially moving at 5m/s on a horizontal surface. There is friction between the block and the sur
    6·1 answer
  • Which best describes the current atomic theory? (1 point) a Since it is only a theory it should not be used in practice. b It ha
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!