1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
2 years ago
9

The principles of magnetism apply everywhere on earth. What does this tell us about God and His character?

Physics
1 answer:
Bas_tet [7]2 years ago
3 0

Answer:

God is omnipresent.

Explanation:

This means God is everywhere and He works where ever we are in the world

You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
What causes clouds of dust and gas to form a protostar
just olya [345]
<h2>Answer: Gravitational attraction </h2>

Gravity force causes the clouds of dust and gas to form a protostar. As this <u>attraction force</u> is responsible for gathering and compressing the existing elements in the cloud of gas and dust, heating them during this process.

Then, when the amount of material accumulated by gravitational contraction is large enough, and the temperature and pressure reached high enough, the <u>nuclear fusion</u> process will begin.

To understand it better: The hydrogen nuclei will begin to fuse, generating helium nuclei in the process and releasing huge amounts of energy.

It should be noted that the protostars radiate half of the energy contributed by the gravitational collapse and the other half is invested in heating its core.

4 0
2 years ago
The law of mass action suggests that _____.
Nostrana [21]

the higher concentration of molecules, the faster a reaction can occur

7 0
2 years ago
Read 2 more answers
30 POINTS! (Question is located in picture under graph)
harkovskaia [24]
Hi i think its E because the the numbers on both sides are to spread out and are not even one side is 4 and the other is 3
8 0
3 years ago
Read 2 more answers
Two 3.0 μC charges lie on the x-axis, one at the origin and the other at What is the potential (relative to infinity) due to the
Airida [17]

Complete Question:

Two 3.0µC charges lie on the x-axis, one at the origin and the other at 2.0m. A third point is located at 6.0m. What is the potential at this third point relative to infinity? (The value of k is 9.0*10^9 N.m^2/C^2)

Answer:

The potential due to these charges is 11250 V

Explanation:

Potential V is given as;

V =\frac{Kq}{r}

where;

K is coulomb's constant = 9x10⁹ N.m²/C²

r is the distance of the charge

q is the magnitude of the charge

The first charge located at the origin, is 6.0 m from the third charge; the potential at this point is:

V =\frac{9X10^9 X3X10^{-6}}{6} =4500 V

The second charge located at 2.0 m, is 4.0 m from the third charge; the potential at this point is:

V =\frac{9X10^9 X3X10^{-6}}{4} =6750 V

Total potential due to this charges  = 4500 V + 6750 V = 11250 V

6 0
3 years ago
Other questions:
  • A rectangular block of mass 30 kg measures 0.1 m by 0.4 m by 1.5 m.
    9·2 answers
  • A runner completes the 300-meter dash in 38 seconds. What is the speed of the runner? Round your answer to the nearest tenth.The
    12·1 answer
  • Which situation is work not being done? A) A bookcase is slid across carpeting. B) A stack of books is carried at waist level ac
    7·1 answer
  • Do you think scientists will ever be able to recreate a living creature from the distant past successfully?
    8·2 answers
  • What does it mean by the fact that the acceleration of a car is 5m/s square??​
    5·1 answer
  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outst
    5·1 answer
  • Help me i cant solve it
    14·1 answer
  • Bài 1. Ở nhiệt độ 17°C, có bao nhiêu phần trăm phân tử khí có các vận tốc sai khác
    8·1 answer
  • Describe how a convection cell is created in the mantle of the Earth.
    15·2 answers
  • A helicopter flies over the arctic ice pack at a constant altitude, towing an airborne 130-kg laser sensor that measures the thi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!