1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
3 years ago
15

A large crate of mass m is placed on the back of a truck but not tied down. As the truck accelerates forward with an acceleratio

n a, the crate remains at rest relative to the truck. What force causes the crate to accelerate forward?
a) normal force
b) force of gravity
c) force of friction between the crate and the floor of the truck
d) the "ma" force
e) none of these
Physics
2 answers:
Margaret [11]3 years ago
5 0

Answer: Option C

Explanation: Let's analyze each possible force:

A)normal force, it pushes in the direction in which the box has contact with some surface, in this case, is in the bottom of the truck, so this force pushes upwards.

B) Force of gravity always pushes downwards, so it can not accelerate the box in the same direction in which the truck is moving.

c) The force of friction points in the opposite direction in which the box would move, if the truck moves to the right, the box will move to the left, so the friction pushes also to the right, which is the same direction in which the truck is moving.

D) there is nothing called the "ma" force.

Now, the correct option would be C; the force of friction (the statical one, because we know that the box does not move)

Andrew [12]3 years ago
4 0
"Force of friction between the crate and the floor of the truck" is the one force among the choices given in the question that <span>causes the crate to accelerate forward. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
You might be interested in
Estimate how far apart the rays of deepest red and deepest violet light are as they exit the bottom surface. assume nred = 1.57
Harlamova29_29 [7]
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:
n_1sin(\theta_1)=n_2sin(\theta_2)
Where \theta_2 differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question, \Delta x is the distance between both rays.
\theta_{2red}=Asin(\frac{sin(30)}{1.57})\approx 18.5705
\theta_{2violet}=Asin(\frac{sin(30)}{1.60})\approx 18.21
At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:
d_{violet}=h.tan(\theta_{2violet})\approx 0.0132m
For red we have:
d_{red}=h.tan(\theta_{2red})\approx 0.0134m
We finally have:
\Delta x=d_{red}-d_{violet}\approx2.8\times10^{-4}m


6 0
3 years ago
(a) What is the potential between two points situated 10 cm and 20 cm from a 3.0-μC point charge? (b) To what location should th
julia-pushkina [17]

Answer:

(a) 135 kV

(b) The charge chould be moved to infinity

Explanation:

(a)

The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

V = -\dfrac{kQ}{r}

where k = 9\times 10^9 \text{ F/m}

Difference in potential between the points is

kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}

PD = 135\times 10^3\text{ V} = 135\text{ kV}

(b)

If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.

270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]

10 - \dfrac{1}{x} = \dfrac{270000}{9\times10^9\times3\times10^{-6}} = 10

\dfrac{1}{x} = 0

x = \infty

The charge chould be moved to infinity

7 0
3 years ago
Scientist have been able to determine the composition of Earth's layers by:
Pie
D is the correct answer
4 0
3 years ago
I left a location by 6:38am and arrived a new location by 6: 58am. How do I calculate the time spent?
jolli1 [7]

Answer:20 minutes

Explanation:

06:58am - 06:38am =20 minutes

6 0
3 years ago
Read 2 more answers
Coherent light of wavelength 540 nm passes through a pair of thin slits that are 3.4 × 10-5 m apart. At what angle away from the
Scrat [10]

Answer: 1.8\°

Explanation:

The diffraction angles \theta_{n} when we have a slit divided into n parts are obtained by the following equation:

dsin\theta_{n}=n\lambda (1)

Where:

d=3.4(10)^{-5}m is the width of the slit

\lambda=540 nm=540(10)^{-9}m is the wavelength of the light  

n is an integer different from zero.

Now, the second-order diffraction angle is given when n=2, hence equation (1) becomes:

dsin\theta_{2}=2\lambda (2)

Now we have to find the value of \theta_{2}:

sin\theta_{2}=\frac{2\lambda}{d} (3)

Then:

\theta_{2}=arcsin(\frac{2\lambda}{d})   (4)

\theta_{2}=arcsin(\frac{2(540(10)^{-9}m)}{3.4(10)^{-5}m})   (5)

Finally:

\theta_{2}=1.8\°   (6)

5 0
3 years ago
Other questions:
  • A child goes down a slide, starting from rest. If the length of the slide is 2 m and it takes the child 3 seconds to go down the
    9·1 answer
  • I NEED THIS ANSWER TODAY PLEASE HELP ME
    6·2 answers
  • Which of the following statements best states Newton's second law?
    12·1 answer
  • If the unbalanced force is -20.0 N and the mass of the object is 3.75 kg, what is the acceleration of the the object while this
    13·1 answer
  • A snowball starting at rest rolls down a hill and reaches 5 m/s. If the hill is
    12·1 answer
  • What happened to the kelp forest when the otter was hunted to near extinction?
    7·1 answer
  • What is the measure of minor arc AB?
    10·1 answer
  • Write any three applicataion pressure in our daily life ?​
    15·1 answer
  • Pls I need it fast , its for my homework and I can’t find it
    6·1 answer
  • An engineer in a locomotive sees a car stuck on the track at a railroad crossing in front of the train . When the engineer first
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!