Mass, m = 4g = 0.004 kg
Velocity, = 50cm/s = 0.5m/s
Distance, 10cm = 0.1m
The wall would have to resist the energy acquired by the bullet.
Kenetic Energy of bullet = Resistance offered by the wall.
1/2 mv² = Resistance Force * Distance
(1/2) * 0.04 * 0.5 * 0.5 = F * 0.1
0.5 * 0.04 * 0.5 * 0.5 = F * 0.1
0.5 * 0.04 * 0.5 * 0.5/0.1 = F
0.05 = F
Therefore, Resistance offered by the wall = 0.05 N
substitution is the type of mutation that occurred
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
Force exerted by the bullet = mass * acceleration = 0.013 * 850 = 11.05 Newtons.
the rifle exerts same force in opposite direction so we have
11.05 = 3.5 * a
acceleration = 11.05 / 3.5 = 3.16 m /s^-2