Density is calculated as mass per unit volume. In this case, since the material has a mass of 47 grams and we have the volume of 15 cm^3, we can simply divide the values:
Density = 47 grams / 15 cm^3 = 3.1 g/cm^3
Therefore, the material has a density of 3.1 g/cm^3
<span>In the </span>natural logarithm<span> format or in equivalent notation (see: </span>logarithm) as:
base<span> e</span><span> assumed, is called the </span>Planck entropy<span>, </span>Boltzmann entropy<span>, Boltzmann entropy formula, or </span>Boltzmann-Planck entropy formula<span>, a </span>statistical mechanics<span>, </span><span> </span>S<span> is the </span>entropy<span> of an </span>ideal gas system<span>, </span>k<span> is the </span>Boltzmann constant<span> (ideal </span>gas constant R<span> divided by </span>Avogadro's number N<span>), and </span>W<span>, from the German Wahrscheinlichkeit (var-SHINE-leash-kite), meaning probability, often referred to as </span>multiplicity<span> (in English), is the number of “</span>states<span>” (often modeled as quantum states), or "complexions", the </span>particles<span> or </span>entities<span> of the system can be found in according to the various </span>energies<span> with which they may each be assigned; wherein the particles of the system are assumed to have uncorrelated velocities and thus abide by the </span>Boltzmann chaos assumption<span>.
I hope this helps. </span>
C all round
Explanation:
because the outcome of a the traits would be RR, RR, Rr, Rr so it would be all round if it was Rr and Rr than there would have RR, Rr, Rr, and rr and that would have been a
Answer:
2.1 × 10⁻⁵ T
Explanation:
Given:
Inner radius, r = 4 mm = 0.004 m
Outer radius, R = 25 mm = 0.025 m
Current, I = 4 A
Distance of the point from the center, a = 17 mm = 0.017 m
μ₀ = 4π × 10⁻⁷ T·m/A
Now,
For the hollow cylinder magnetic field (B) is given as:
on substituting the respective values, we get
or
B = 2.1 × 10⁻⁵ T