1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
3 years ago
14

In a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the mar

ble is 0.0265 kg and the mass of the pendulum is 0.250 kg, how high will the pendulum swing if the marble has an initial speed of 5.05 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision.
Physics
1 answer:
PilotLPTM [1.2K]3 years ago
5 0

Answer:

0.012 m

Explanation:

m = mass of the marble = 0.0265 kg

M = mass of the pendulum = 0.250 kg

v = initial velocity of the marble before collision = 5.05 m/s

V = final velocity of marble-pendulum combination after the collision = ?

using conservation of momentum

m v = (m + M) V

(0.0265) (5.05) = (0.0265 + 0.250) V

V = 0.484 m/s

h = height gained by the marble-pendulum combination

Using conservation of energy

Potential energy gained by the combination = Kinetic energy of the combination just after collision

(m + M) gh = (0.5) (m + M) V²

gh = (0.5) V²

(9.8) h = (0.5) (0.484)²

h = 0.012 m

You might be interested in
1. What is the momentum of a 1550 kg car that is traveling leftward at a velocity of 15 m/s?
Alik [6]

Answer:

Momentum, p = 23250 kg m/s

Explanation:

Given that

Mass of a car, m = 1550 kg

Speed pf car, v = 15 m/s

We need to find the momentum of the car. The formula for the momentum of an object is given by :

p = mv

Substituting all the values in the above formula

p = 1550 kg × 15 m/s

p = 23250 kg m/s

So, the momentum of the car is 23250 kg m/s.

3 0
3 years ago
A 0.290 kg potato is tied to a string with length 2.50 m, and the other end of the string is tied to a rigid support. The potato
Sergeu [11.5K]

Answer:

A) The speed of the potato at the lowest point of its motion is 7.004 m/s

B) The tension on the string at this point is 8.5347 N

Explanation:

Here we have that the height from which the potato is allowed to swing  is 2.5 m

Therefore we have ω₂² = ω₁² + 2α(θ₂ - θ₁)

Where:

ω₂ = Final angular velocity

ω₁ = Initial angular velocity = 0 rad/s

α = Angular acceleration

θ₂ = Final angle position

θ₁ = Initial angle position

However, we have potential energy of the potato

= Mass m×Gravity g× Height h

= 0.29×9.81×2.5 = 7.1125 J

At he bottom of the swing, the potential energy will convert to kinetic energy as follows

K.E. = P.E. = 7.1125 J

1/2·m·v² = 7.1125 J

Therefore,

v² = 7.1125 J/(1/2×m) = 7.1125 J/(1/2×0.290) = 49.05

∴ v = √49.05 = 7.004 m/s

B) Here we have the tension given by

Tension T in the string = weight of potato + Radial force of motion

Weight of potato = mass of potato × gravity

Radial force of motion of potato = mass of potato × α,

where α = Angular acceleration = v²/r and r = length of the string

∴ Tension T in the string = m×g + m×v²/r = 0.290×(9.81 + 7.004²/2.5)

T = 8.5347 N

4 0
3 years ago
Read 2 more answers
If the elevation in reservoir b is 100m, what must the elevation in reservoir a be if thevolume flow rate through the cast-iron
Zinaida [17]

The elevation in reservoir  at  the rate of flow using is 03m/s  is 114m.

The Reynolds range is the ratio of inertial forces to viscous forces. The Reynolds variety is a dimensionless variety used to categorize the fluids structures in which the impact of viscosity is crucial in controlling the velocities or the flow sample of a fluid.

The reason of the Reynolds number is to get a few experience of the relationship in fluid glide between inertial forces (this is those that maintain going by using Newton's first law – an item in motion stays in movement) and viscous forces, this is people who cause the fluid to come back to a forestall because of the viscosity of the fluid.

calculation,

Let L = 100 m pipe

     L1 = 150 m pipe

H f = friction losses

Using Reynolds number, relative  roughness, friction co- effiicients and friction losses

Substitute the value in equation

Z = 110= 0.48= 3.54

Z = 114m

Therefore water surface elevation at reservoir  is 114 meter.

Learn more about rate of flow here:-brainly.com/question/21630019

#SPJ4

6 0
2 years ago
A springboard diver intending to do a somersault brings her knees and arms closer to her body during the dive. What effect does
Hoochie [10]

During the diving when a diver jumps off from platform he brings her knees and arms closer to the body

This is because when diver is in air he don't have any torque about his center of mass which shows that angular momentum of his body will remain constant during his motion in air

Now we can say product of his moment of inertia and his angular speed will remain constant always

So here if we decrease the moment of inertia of the body during our motion then angular speed will increase so that product will remain constant

and this is what the diver use during his diving

so correct answer will be

<u><em>It decreases her moment of inertia.</em></u>

7 0
3 years ago
A standing wave pattern is created on a string with mass density μ = 3.4 × 10-4 kg/m. A wave generator with frequency f = 61 Hz
uranmaximum [27]

Answer:

1) λ = 0.413 m , 2)v = 25,213 m / s , 3)  T = 0.216 N , 4) m = 22.04 10-3 kg

Explanation:

1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related

         λ = 2L / n               n = 1, 2, 3 ...

In this case L = 0.62 m and n = 3

Let's calculate

        λ = 2 0.62 / 3

        λ = 0.413 m

2) the velocity related to wavelength and frequency

      v =  λ f

      v = 0.413 61

      v = 25,213 m / s

3) let's use the equation

     v = √T /μ

     T = v² μ

     T = 25,213² 3.4 10⁻⁴

     T = 0.216 N

4) the rope tension is proportional to the hanging weight

      T-W = 0

     T = W

    W = m g

    m = W / g

    m = 0.216 / 9.8

    m = 22.04 10-3 kg

5) n = 2

     λ = 2 0.62 / 2

     λ = 0.62 m

6) v =  λ f

     v = 0.62 61

     v = 37.82 m / s

7) T = v² μ

   T = 37.82² 3.4 10⁻⁴

   T = 0.486 N

8) m = W / g

   m = 0.486 / 9.8

   m = 49.62 10⁻³ kg

9) n = 1

    λ = 2 0.62

    λ = 1.24 m

    v = 1.24 61

    v = 75.64 m / s

    T = v² miu

    T = 75.64² 3.4 10⁻⁴

    T = 2.572 10⁻² N

    m = 2.572 10⁻² / 9.8

    m = 262.4 10⁻³ kg

5 0
3 years ago
Other questions:
  • A mass of 2000 kg is raised 5.0 m in 10 seconds. What is the power output in horsepower to raise the object?
    9·1 answer
  • A track and field athlete is running forward with a javelin at a
    14·1 answer
  • Which process is an example of a physical change?
    12·1 answer
  • What are the precaution you take when you are carrying out experiment on kirchhoffs law​
    13·1 answer
  • qual charges, one at rest, the other having a velocity of 104 m/s, are released in a uniform magnetic field. Which charge has th
    7·1 answer
  • How are waves that are created by a musical instrument and waves that
    11·1 answer
  • A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surfac
    15·1 answer
  • Plz help!! WILL MARK BRAINLIEST :)
    15·1 answer
  • What is the most significant change in the comet's energy as it moves from
    14·1 answer
  • 21. A person standing 49.5m from the foot of a cliff claps his hands and hears an echo 0.3
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!