To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



Answer:
No.
Explanation:
- According to Faraday's law, the induced emf in the circuit is given by :
, it is proportional to the rate of change of magnetic flux.
- In this case, a short piece of wire that is not attached to anything and move it up and down in a magnetic field. It means that the circuit is not completed here. It is an open circuit. For the induction of current, a circuit must be completed.
- Hence, no current will induce.
Answer:
in which standard you are, i am typing your answer till please reply.
The vector B will have two components and those components will be called resultant vectors.
<h3>What is a component vector?</h3>
A component vector is a unit vector that represents a given vector in a particular direction.
A vector can be represented in x - direction and y - direction.
- x - component of the vector = Bcosθ
- y - component of the vector = Bsinθ
Thus, the vector B will have two components and those components will be called resultant vectors.
Learn more about component vectors here: brainly.com/question/13416288
#SPJ12
#8 positive kinetic energy