The radius of curvature of the proton's path while in the field is
×
.
b) Let R = radius curvature of protons path. Then,
relation b/w B, R, and v is: -


× 
Hence, the radius of curvature of the proton's path while in the field is
×
.
<h3>
What do you mean by Magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field. The magnetic field of a permanent magnet pulls on ferromagnetic substances like iron and attracts or repels other magnets. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilized in electromagnets, and electric fields that change in time produce magnetic fields that surround magnetized things.
To know more about Magnetic Field visit:
brainly.com/question/14848188
#SPJ4
Inertia is a term that qualitatively describes the ability of a substance to resist changes in its state of motion, while mass gives a quantitative value for inertia
Answer:
a. Acceleration, a = 1.88 m/s²
b. Time, t = 7.87 seconds.
Explanation:
Given the following data;
Initial velocity, U = 14.5m/s
Final velocity, V = 29.3m/s
Distance, S = 172m
a. To find the acceleration of the speedboat;
We would use the third equation of motion;
V² = U² + 2aS
Substituting into the formula
29.3² = 14.5² + 2a*172
858.49 = 210.25 + 344a
344a = 858.49 - 210.25
344a = 648.24
a = 648.24/344
Acceleration, a = 1.88 m/s²
b. To find the time;
We would use the first equation of motion;
V = U + at
29.3 = 14.5 + 1.88t
1.88t = 29.3 - 14.5
1.88t = 14.8
Time, t = 14.8/1.88
Time, t = 7.87 seconds.
A.. in case of any problems that may occur you would know what company to call
Answer:
D
Explanation:
There is a variety of many types of energies. Some of which are mechanical, thermal, electromagnetic, nuclear, chemical, sonic, and more.