1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
4 years ago
10

Jeff's body contains about 5.12 L5.12 L of blood that has a density of 1060 kg/m3.1060 kg/m3. Approximately 45.0%45.0% (by mass)

of the blood is cells and the rest is plasma. The density of blood cells is approximately 1125 kg/m3,1125 kg/m3, and about 1%1% of the cells are white blood cells, the rest being red blood cells. The red blood cells are about 7.50????m7.50μm across (modeled as spheres). What is the mass of the blood mbloodmblood in Jeff's body?
Physics
1 answer:
hjlf4 years ago
4 0

Answer:

5.4272 kilogram is the mass of the blood in Jeff's body.

Explanation:

Mass of the blood in Jeff's body = m

Volume of the blood in Jeff's body = V = 5.12 L

Density of blood = 1060 kg/m^3=1.060 kg/L

1m^3= 1000 L

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

D=\frac{M}{V}

M=D\times V

M=1.060 kg/L\times 5.12 L=5.4272 kg

5.4272 kilogram is the mass of the blood in Jeff's body.

You might be interested in
vA 61.2-kg circus performer is fired from a cannon that is elevated at an angle of 57.8 ° above the horizontal. The cannon uses
dsp73

Answer:

The effective spring constant of the firing mechanism is 1808N/m.

Explanation:

First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

v_0_x=\frac{x}{t}\\ \\v_0\cos\theta=\frac{x}{t}\\\\v_0=\frac{x}{t\cos\theta}

(This is correct because the horizontal motion has acceleration zero). Then:

v_0=\frac{20.8m}{(2.60s)\cos57.8\°}\\\\v_0=15.0m/s

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

E_0=E_f\\\\U_e=K\\\\\frac{1}{2}kx^2=\frac{1}{2}mv^2\\\\\implies k=\frac{mv^2}{x^2}

Then, plugging in the given values, we obtain:

k=\frac{(61.2kg)(15.0m/s)^2}{(2.76m)^2}\\\\k=1808N/m

Finally, the effective spring constant of the firing mechanism is 1808N/m.

3 0
3 years ago
Abigail wants to get better at baseball. In order to do this, she has created a list of skills she will need to improve. Which s
anygoal [31]

Power is your answer :)

Have a great day!!!

5 0
3 years ago
Read 2 more answers
Ground reaction force acting on carter
mezya [45]
We don't know Carter, and we don't know where he is or what
he's doing, so I'm taking a big chance speculating on an answer.

I'm going to say that if Carter is pretty much just standing there,
or, let's say, lying on the ground taking a nap, then the force of
the ground acting on him is precisely exactly equal to his weight.
8 0
3 years ago
At its Ames Research Center, NASA uses its large "20-G" centrifuge to test the effects of very large accelerations ("hypergravit
Over [174]

Answer:

v=32.9m/s

Explanation:

The acceleration needed to mantain a circular motion of radius r and speed v is given by the equation a=v^2/r

This is the centripetal acceleration. The person will feel what is called a centrifugal acceleration, of the same value, because he is not in an inertial frame (thus subject to fictitious forces, product of inertia).

We want to know the speed of his head when it is subject to 12.5 times the value of the acceleration of gravity while moving on a 8.84m radius circle, so we must do:

v=\sqrt{ar} = \sqrt{12.5gr}=\sqrt{(12.5)(9.8m/s)(8.84m)}=32.9m/s

7 0
3 years ago
Block A of mass M is on a horizontal surface of negligible friction. An identical block B is attached to block A by a light stri
miv72 [106K]

Answer:

T’= 4/3 T  

The new tension is 4/3 = 1.33 of the previous tension the answer e

Explanation:

For this problem let's use Newton's second law applied to each body

Body A

X axis

      T = m_A a

Axis y

     N- W_A = 0

Body B

Vertical axis

     W_B - T = m_B a

In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension

We write the equations

    T = m_A a

    W_B –T = M_B a

We solve this system of equations

     m_B g = (m_A + m_B) a

    a = m_B / (m_A + m_B) g

In this initial case

     m_A = M

     m_B = M

     a = M / (1 + 1) M g

     a = ½ g

Let's find the tension

    T = m_A a

    T = M ½ g

    T = ½ M g

Now we change the mass of the second block

    m_B = 2M

    a = 2M / (1 + 2) M g

    a = 2/3 g

We seek tension for this case

    T’= m_A a

    T’= M 2/3 g

   

Let's look for the relationship between the tensions of the two cases

   T’/ T = 2/3 M g / (½ M g)

   T’/ T = 4/3

   T’= 4/3 T

The new tension is 4/3 = 1.33 of the previous tension the answer  e

4 0
3 years ago
Other questions:
  • What do we mean by the observable universe?
    14·1 answer
  • Pressure and volume changes at a constant temperature can be calculated using
    7·1 answer
  • 1. Which of the following statements about mechanical waves is true?
    8·1 answer
  • a stone is thrown by a person from the top of the building, which is 200m tall. at the same time, another stone is thrown with v
    13·1 answer
  • Initial velocity 10 m/s accelerates at 5 m/s for 2 seconds whats the final velocity
    12·1 answer
  • Roger drives his car at a constant speed of 80 km/hr. How far can he travel in 2 hrs. and 30 minutes?
    15·1 answer
  • Which letter on the map represents Australia?
    9·1 answer
  • Which of the following would have the highest kinetic energy? *
    9·1 answer
  • Marx argued that what happens when a worker is separated
    12·1 answer
  • What is the difference between light and electromagnetic wave?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!