1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
4 years ago
10

Jeff's body contains about 5.12 L5.12 L of blood that has a density of 1060 kg/m3.1060 kg/m3. Approximately 45.0%45.0% (by mass)

of the blood is cells and the rest is plasma. The density of blood cells is approximately 1125 kg/m3,1125 kg/m3, and about 1%1% of the cells are white blood cells, the rest being red blood cells. The red blood cells are about 7.50????m7.50μm across (modeled as spheres). What is the mass of the blood mbloodmblood in Jeff's body?
Physics
1 answer:
hjlf4 years ago
4 0

Answer:

5.4272 kilogram is the mass of the blood in Jeff's body.

Explanation:

Mass of the blood in Jeff's body = m

Volume of the blood in Jeff's body = V = 5.12 L

Density of blood = 1060 kg/m^3=1.060 kg/L

1m^3= 1000 L

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

D=\frac{M}{V}

M=D\times V

M=1.060 kg/L\times 5.12 L=5.4272 kg

5.4272 kilogram is the mass of the blood in Jeff's body.

You might be interested in
What is the net force required to accelerate a 884 kg car at 2 m/sec2?
EastWind [94]

Answer:

1768 N

Explanation:

We can solve the problem by using Newton's second law:

F=ma

where

F is the net force acting on an object

m is the mass of the object

a is its acceleration

In this problem, we have a car of mass

m = 884 kg

And its acceleration is

a=2 m/s^2

Substituting into the equation, we find the net force on the car:

F=(884)(2)=1768 N

3 0
3 years ago
9. Una jeringa contiene cloro gaseoso, que ocupa un volumen de 95 mL a una presión de 0,96 atm. ¿Qué presión debemos ejercer en
masha68 [24]

Answer:

2.61 atm

Ley de Boyle

Explanation:

P_1 = Presión inicial = 0.96 atm

P_2 = Presión final

V_1 = Volumen inicial = 95 mL

V_2 = Volumen final = 35 mL

En este problema usaremos la ley de Boyle.

\dfrac{P_1}{P_2}=\dfrac{V_2}{V_1}\\\Rightarrow P_2=\dfrac{P_1V_1}{V_2}\\\Rightarrow P_2=\dfrac{0.96\times 95}{35}\\\Rightarrow P_1=2.61\ \text{atm}

La presión ejercida sobre el émbolo para reducir su volumen es de 2.61 atm.

4 0
3 years ago
A woman can row a boat at 5.60 km/h in still water. (a) If she is crossing a river where the current is 2.80 km/h, in what direc
katrin2010 [14]

Answer:

a) θ=210°, b) t=1.155hr, c) t=1.333hr, d) t=1.333hr, e) θ=180° (straight across), f) t=1hr.

Explanation:

So, the very first thing we nee to do when solving this problem is draw a diagram that represents it. In the attached picture I show a diagram for each part of this problem.

part a)

So, for her to move in a direction directly opposite her starting point, the x-component of her velocity must be de same as the velocity of the river in the opposite direction. We can use this fact to find the angle we need. If we analize the triangle I drew in the diagram, we can ses that:

cos \theta = \frac {V_{river}}{V_{boat}}

When solving for theta, we get that:

\theta =cos^{-1} ( \frac {V_{river}}{V_{boat}})

so now we can substitute the corresponding values:

\theta =cos^{-1} ( \frac {2.80km/hr}{5.60km/hr}})

Which yields:

\theta = 60^{o}

but we are measuring the angle relative to the line perpendicular to the river, positive if down the river. So we need to subtract the angle from 270° so we get:

θ=270°-60°=210°

part b)

for part b, we need to find what the y-component for the velocity of the boat is for an angle of 210° as shown in the problem, so we get that:

V_{y}=5.60km/hr*cos(210^{o})

V_{y}=-4.85km/hr

The woman will head in a negative 5.60km distance from one side to the other, so we get that the time it takes her to go to the other side of the river is:

t=\frac{y}{V_{y}}

t=\frac{5.60km}{4.85km/hr}=1.155hr

part c)

In order to find the time it takes her to travel 2.80km down and up the river, we need to find the velocities she will have in both directions. First, down stream:

V_{ds}=V_{river}+V{boat}

V_{ds}=2.80km/hr+5.60km/hr=8.40km/hr

and now up stream:

V_{us}=V_{boat}-V{river}

V_{us}=5.60km/hr-2.80km/hr=2.80km/hr

Once we got these two velocities we will now need to find the time to take each trip:

time down stream:

t_{ds}=\frac{x}{v_{ds}}

t_{ds}=\frac{2.80km}{8.40km/hr}=0.333hr

and the time up stream:

t_{us}=\frac{x}{v_{us}}

t_{us}=\frac{2.80km}{2,80km/hr}=1hr

so the total time will be:

t_{ds}+t_{us}=0.333hr+1hr=1.333hr

d) the time it takes the boat to go upstream and then downstream for the same distance is the same as the time we got on part c, since both times will be the same but they will come in different order, but their sum will be just the same:

t=1.333hr

e) For her to cross the river faster, she must row in a 180° direction (this is in a direction straight accross the river) that way she will use all her velocity to move across the river. (Even though she will move a certain distance horizontally and will not reach a point opposite to the starting point.)

f) In order to find the time it takes her to get to the other side, we need to divide the distance into the velocity of the boat.

t=\frac{d}{v_{boat}}

t=\frac{5.60km}{5.60km/hr}

so

t= 1hr

4 0
4 years ago
Read 2 more answers
Why do covalent and ionic bonds form?
nevsk [136]

Answer:

Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.

Explanation:

hope this helps!

5 0
3 years ago
A piston/cylinder contains 2 kg of water at 20◦C with a volume of 0.1 m3. By mistake someone locks the piston, preventing it fro
morpeh [17]

Answer:

Hi

Final temperature = 250.11 °C

Final volume = 0,1 m3.

Process work = 0

Explanation:

The specific volume in the initial state is: v = 0.1m3/2 kg = 0.05 m3/kg.

This volume is located between the volumes as saturated liquid and saturated steam at 20 °C. For this reason the water is initially in a liquid vapor mixture. As the piston was blocked the volume remains constant and the process is isometric, also known as isocoric process, so the final temperature will be the water temperature at a saturated steam of v=0.05m3/kg, which is obtained by using steam tables for water, by linear interpolation. As follows, using table A-4 of the Cengel book 7th Edition:

v=0.05 m3/kg

v1=0.057061 m3/kg

T1=242.56°C

v2=0.049779 m3/kg

T2=250.35°C

T=\frac{T2-T1}{v2-v1} x(v-v1)+T1=\frac{250.35°C-242.56°C}{0.049779m3/kg-0.057061m3/kg}x(0.05m3/kg-0.057061m3/kg)+242.56°C=250.11°C

The process work is zero because there is no change in volume during heating:

W=PxΔv=Px0=0

where

W=process work

P=pressure

Δv=change of volume, is zero because the piston was blocked so the volume remains constant.

7 0
3 years ago
Other questions:
  • What would decrease the resistance of wires carrying an electric current
    5·2 answers
  • The curved movement of air or water is the result of which of these?
    14·2 answers
  • The water in a river flows uniformly at a constant speed of 2.27 m/s between parallel banks 69.3 m apart. You are to deliver a p
    15·1 answer
  • The bending of a wave as it moves from one medium to another is called
    6·1 answer
  • What is the chemical formula for potassium carbonate, which is formed from
    11·1 answer
  • What planet with the largest rings
    5·2 answers
  • Why is it important that an astronomer studies physics?
    11·2 answers
  • An impulse of 12.2kg m/s is delivered to an object whose initial momentum is 4.5kgm/s. What is the object's final momentum?
    12·1 answer
  • EASY BRAINLIEST!!URGENT PLEASE HELP.
    11·1 answer
  • Calculate the velocity of an object.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!