Answer:
Interference
Explanation:
When two traveling waves traveling waves along the same path are superimposed(combine). The superimposition of these two waves results in the production of a resultant wave which is defined by the net effect of the two waves. Wave interference occurs most types of waves including radio wave, light, acoustic waves and other wave types. Alternating sound between loud and Zero is heard as the two speakers emit identical pure tones because the resultant amplitude after the interference of the two sound waves is the vector sum of each of their amplitudes. A loud sound is heard, when the crest of both waves meets each other and a zero is heard if the crest of one meets the trough of the other as they cancel out.
Answer:
The current drawn by Horace’s reading glasses is 0.8 A.
Explanation:
Given that,
Resistance of each bulb, R = 2 ohms
Voltage of the system, V = 3.2 volts
These two bulbs are connected in series. The equivalent resistance will be 2 ohms +2 ohms = 4 ohms
Let I is the current drawn by Horace’s reading glasses. Using Ohm's law to find it such that :

So, the current drawn by Horace’s reading glasses is 0.8 A.
Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you
The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
To find the answer, we need to know about the time of flight and range of projectile motion.
<h3>What's the expression of range of a projectile motion?</h3>
- Range = U²× sin(2θ)/g
- U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
- U=√{Range×g/sin(2θ)}
- Here, range= 2.20m, = 36.5°
- U= √{2.20×9.8/sin(73)}
U= √{2.20×9.8/sin(73)} = 22.5m/s
<h3>What's the expression of time of flight in projectile motion?</h3>
- Time of flight= (2×U×sinθ)/g
- So, T= (2×22.5×sin36.5°)/9.8
= 2.73 s
Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
Learn more about the range and time period of projectile motion here:
brainly.com/question/24136952
#SPJ1