The frequency of the oscillation in hertz is calculated to be 0.00031 Hz.
The frequency of a wave is defined as the number of cycles completed per second while the period refers to the time taken to complete a cycle. The frequency is the inverse of period.
So;
Period(T) = 54 minutes or 3240 seconds
Frequency (f) = T-1 = 1/T = 1/3240 seconds = 0.00031 Hz
Learn more: brainly.com/question/14588679
White dwarfs
<u>Explanation:</u>
Hertzsprung-Russel graph is a 2-dimensional graph, plotting star’s luminosity against temperature they emit.
White dwarfs are the star exhibiting high temperatures and low luminosities. These stars are extremely dense and mass comparable to that of the sun.
The main cause of low luminosities in the absence of fusion reaction inside the core of the star. Faint luminosity is provided by the thermal energy of the star. They are considered to be in the final stage of evolution having masses in the range of 10 solar mass (hence not enough to form a star)
Answer:
x =4.5 10⁴ m
Explanation:
To find the distance that the particle moves we must use the equations of motion in one dimension and to find the acceleration of the particle we will use Newton's second law
m = 2.00 mg (1 g / 1000 ug) (1 Kg / 1000g) = 2.00 10-6 Kg
q = -200 nc (1C / 10 9 nC) = -200 10-9 C
Let's calculate the acceleration
F = ma
F = q E
a = qE / m
a = -200 10⁻⁹ 1000 / 2.00 10⁻⁶
a = 1 10² m / s²
Let's use kinematics to find the distance traveled before stopping, where it has zero speed (Vf = 0)
Vf² = Vo² -2 a x
0 = Vo² - 2 a x
x = Vo² / 2a
x = 3000²/ 2100
x =4.5 10⁴ m
This is the distance the particule stop, after this distance in the field accelerates in the opposite direction of the initial
Second part
In this case Newton's second law is applied on the y axis
F -W = 0
F = w = mg
E q = mg
E = mg / q
E = 2.00 10⁻⁶ 9.8 / 200 10⁻⁹
E = 9.8 10⁵ C
The direction of the field is such that the force on the particle is up, as the particle has a negative charge, the field must be directed downwards F = qE = (-q) E
Answer: Light could be thought of as a stream of tiny particles discharged by luminous objects that travel in straight paths.
Explanation:
We can define "radiation" as the transmision of energy trough waves or particles.
Particularly, light is a form of electromagnetic radiation, so the "tiny particles" of light are discharged by a radiating object, particularly we can be more explicit and call it a luminous object, in this way we are being specific about the nature of the radiation of the object.