The answer is C.
Ionic compounds are those that bring together anions and cations bonded together by ionic bonds. The electrostatic forces of the different charges are significant in the bonds that make them strong hence require high energy to break them (high melting point). Due to the regular structure of ionic compound that tend to form lattices in solid form, when struck, they shatter along the lines of weakness of the lattice.
Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg
Answer:
8.94*10^22 kg
Explanation:
Given that
Mass of Lo, M = ?
Radius of Lo, r = 1.82*10^6 m
Acceleration on Lo, g = 1.80 m/s²
Gravitational constant, G = 6.67*10^-11
Using the formula
g = GM/r²
Solution is attached below
Answer is 8.94*10^22 kg
Answer:
m = 35 g
Explanation:
The specific heat of a material can be calculated by the following formula:

where,
C = Specific Heat of Wax = 220 J/g
Q = Amount of Heat Supplied by the Heater = 7700 J
m = mass of wax melted = ?
Therefore,

<u>m = 35 g </u>
<h2>Thus the force of friction is 235 N</h2>
Explanation:
When the bear was at the height of 14 m . Its potential energy = m g h
here m is the mass of bear , g is acceleration due to gravity and h is the height .
Thus P.E = 27 x 10 x 14 = 3780 J
The K.E of the bear just before hitting =
m v²
=
x 27 x ( 6.1 )² = 490 J
The force of friction f = P.E - K.E = 3290 J
Because the work done = Force x Distance
Thus frictional force =
= 235 N