Answer:
The dimensionality of B is <em>length</em> per cubic <em>time</em>.
Explanation:
Units for displacement and time are <em>length</em>
and <em>time</em>
, respectively. Then, formula can be tested for dimensional analysis as follows:
![[L] = B\cdot [T]^{3}](https://tex.z-dn.net/?f=%5BL%5D%20%3D%20B%5Ccdot%20%5BT%5D%5E%7B3%7D)
Now, let is clear
to determine its units:
![B = \frac{[L]}{[T]^{3}}](https://tex.z-dn.net/?f=B%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%5E%7B3%7D%7D)
The dimensionality of B is <em>length</em> per cubic <em>time</em>.
Answer:
6840 N
Explanation:
The force acting on the car can be found by using Newton's second law:
F = ma
where
F is the net force on the car
m is the mass of the car
a is its acceleration
For the car in this problem,
m = 1800 kg

Substituting,

Answer: 20
Explanation: Mass number is the number of neutrons plus the number of protons. 8 + 12 gives 20.