Answer:
Experiment plays many roles in science. One of its important roles is to test theories and to provide the basis for scientific knowledge. It can also call for a new theory, either by showing that an accepted theory is incorrect, or by exhibiting a new phenomenon that is in need of explanation.
Explanation:
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
Answer:
The answer is b, c, d, e
Explanation:
b. 2 N2O5 → 4 NO2 + O2
r = k [N2O5]^2 --> Second-order regarding global reaction
c. 2 HI → H2 + I2
r = k [HI]^2 --> Second-order regarding global reaction
d. 2 N2O → 2 N2 + O2
r = k [N2O]^2 --> Second-order regarding global reaction
e. 2 NO2 → 2 NO + O2
r = k [NO2]^2 --> Second-order regarding global reaction
The gas flows from higher concentration/pressure to lower concentration/pressure, which is outside the ball.