The balloon has traveled 30 meters up from the bicyclist and since it's rising 5 meters per second, 2 seconds later it will travel 10 meters higher. 2 seconds later the bicyclist will travel 20 meters away. so 10+20+30= 60 meters away from each other.
Answer:
0.7561 g.
Explanation:
- The hydrogen than can be prepared from Al according to the balanced equation:
<em>2Al + 6HCl → 2AlCl₃ + 3H₂,</em>
It is clear that 2.0 moles of Al react with 6.0 mole of HCl to produce 2.0 moles of AlCl₃ and 3.0 mole of H₂.
- Firstly, we need to calculate the no. of moles of (6.8 g) of Al:
no. of moles of Al = mass/atomic mass = (6.8 g)/(26.98 g/mol) = 0.252 mol.
<em>Using cross multiplication:</em>
2.0 mol of Al produce → 3.0 mol of H₂, from stichiometry.
0.252 mol of Al need to react → ??? mol of H₂.
∴ the no. of moles of H₂ that can be prepared from 6.80 g of aluminum = (3.0 mol)(0.252 mol)/(2.0 mol) = 0.3781 mol.
- Now, we can get the mass of H₂ that can be prepared from 6.80 g of aluminum:
mass of H₂ = (no. of moles)(molar mass) = (0.3781 mol)(2.0 g/mol) = 0.7561 g.
The correct option is this: OXYGEN WILL HAVE MORE KINETIC ENERGY THAN NITROGEN.
Increasing the temperature of oxygen requires the application of heat. The heat energy that is applied to the gas will make the particles of the oxygen gas to gain more kinetic energy and to move more rapidly than before, by so doing, the particles will colloid more with one another and with the wall of the container. The kinetic energy of the particles of the nitrogen gas will remain the same since its temperature was not affected.