Calculate first the number of moles of ethylene glycol by dividing the mass by the molar mass.
n = (6.21 g ethylene glycol) / 62.1 g/mol
n = 0.1 mol
Then, calculate the molality by dividing the number of moles by the mass of water (in kg).
m = 0.1 mol/ (0.025 kg) = 4m
Then, use the equation,
Tb,f = Tb,i + (kb)(m)
Substituting the known values,
Tb,f = 100°C + (0.512°C.kg/mol)(4 mol/kg)
<em>Tb,f = 102.048°C</em>
The answer is going to be 476.06.
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Answer:
15.Potassium oxide
16.Calcium chloride
17.Aluminium sulphide
18.CaS
Explanation:
15.K is the chemical symbol of Potassium and generally the name of the non-metal at the end of a formula has the suffix '-ide' and since O is oxygen, the name becomes Potassium oxide.
16. The same applies here. Ca is Calcium and Cl is Chlorine but since its the non-metal at the end, it ends in -ide. So Calcium chloride.
17.The same applies here too. Al is Aluminium and S is Sulphur so Aluminium sulphide.
18. Calcium's symbol is Ca and that of Sulphur is S and that gives the formula CaS.