Answer:
A. 69.9m
Explanation:
Given parameters:
Initial velocity = 10.5m/s
Final velocity = 21.7m/s
Time = 4.34s
Unknown:
Distance traveled = ?
Solution:
Let us first find the acceleration of the car;
Acceleration =
v is final velocity
u is initial velocity
t is the time
Acceleration =
= 2.58m/s²
Distance traveled;
V² = U² + 2aS
21.7² = 10.5² + 2 x 2.58 x S
360.64 = 2 x 2.58 x S
S = 69.9m
Answer:
The correct answer is a) The kinetic energy of the ice increases by equal amounts for equal distances.
Explanation:
The law of conservation states that the energy cannot be created nor be destroyed but can be converted from one form to another.Before the ice even starts falling we already know that it possesses energy in the form of potential energy given by P=mgh where m is the mass of the ice , g is the acceleration due to gravity and h is the height of the ice above the ground whatever that may be, since a number is not given here.As the ice falls the energy is converted from potential energy to kinetic energy. We notice one thing about the equation for the potential energy P , which is that it is not only directly proportional to h but also is linear in h as well(which is the main reason why a) is correct) which means that if the ice drops by 1 meter the potential energy it will have lost would be ΔPE=mgΔh=-mg, where Δh is the change in its height which is 1 meter here.And according to the principle of conservation of energy this energy must be converted to kinetic energy so the ΔKE=-ΔPE=mg, and this process repeats and for each meter it falls, it picks up the same amount of kinetic energy equaling mg(which is the same as the loss in PE per each meter of fall). So a 2 meter decrease in height will result in an increase in KE of 2mg, a 3 meter decrease in height will result in an increase in KE of 3mg. gain in kinetic energy only depends on the drop in height, which is true irrespective of where the ice might happen to be in its journey close to the top or the bottom. So the drop in height of lets say x at any point in the journey will result in the same increase in KE = ΔKE = mgx. Which proves part a) to be correct.
There is no need for tangential acceleration when moving in a circle at a constant speed.
<h3>What is centripetal acceleration?</h3>
centripetal acceleration refers to the speed at which a body moves through a circle. Due to the fact that velocity is a vector quantity (i.e., it has both a magnitude, the speed, and a direction), when a body travels in a circle, its direction is constantly changing, which causes a change in velocity, which results in an acceleration.
<h3>Which is an example of centripetal acceleration?</h3>
Centripetal acceleration occurs when you spin a ball on a string above your head. A car experiences centripetal acceleration when it is being driven in a circle. Additionally, a satellite in orbit around the Earth experiences centripetal acceleration.
To know more about tangential acceleration :
brainly.com/question/14993737
#SPJ9
Time required : 3 s
<h3>Further explanation
</h3>
Power is the work done/second.

To do 33 J of work with 11 W of power
P = 11 W
W = 33 J
