Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
H2O is A chemical reaction of the most oxygen atoms
Answer:
A change in form or appearance of matter
Explanation:
a) The reaction is exothermic since the overall enthalpy change is negative. this means that the system has lost energy to the environment, namely, the apparatus and due to drought.
b) We first calculate the number of moles in 3.55 grams of magnesium.
number of moles= mass/ atomic mass
=3.55/24
=0.1479 moles(to 4sf)
now, if 2 moles of magnesium give -1204kJ
How much energy is given by 0.1479 moles
= (0.1479×-1204kJ)
=-89.0358kJ (don't forget the negative sign)
c) two molesof MgO produces -1204kJ of energy
then -234kJ will be produced by
=(-234kJ×2moles)/1204kJ
=0.3887moles
one mole of MgO weighs 24+16=40
therefore the mass produced is 0.3887moles×40=15.548grams
(d) we first find the number of moles of MgO in 40.3 grams
number of moles=mass/RFM
=40.3g/40= 1.0075moles
if 2 moles of MgO give 1204 kJ then decomposing 1.0075 moles requires
(1.0075 moles×1204kJ)/2=606.515kJ