Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):
<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?
</span>The answer will typically be given in joules:
1J=kg∗m2s2 Could be wrong... But I believe it is 5.3...? as a final product.
Pretty sure it’s A. Hope this helps.
I think Im gonna have to go with C 6.00 T/s but Im not sure
Answer:
(A) Q = 321.1C (B) I = 42.8A
Explanation:
(a)Given I = 55A−(0.65A/s2)t²
I = dQ/dt
dQ = I×dt
To get an expression for Q we integrate with respect to t.
So Q = ∫I×dt =∫[55−(0.65)t²]dt
Q = [55t – 0.65/3×t³]
Q between t=0 and t= 7.5s
Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]
Q = 321.1C
(b) For a constant current I in the same time interval
I = Q/t = 321.1/7.5 = 42.8A.