The law applied here is Hooke's Law which describes the force exerted by the spring with a given distance. The equation for this is F = kΔx, where F is the force in Newtons, k is the spring constant in N/m while Δx is the displacement in meters.
If you want to find work done by a spring, this can be solved by using differential equations. However, derived equations are already ready for use. The equation is
W = k[{x₂-x₁)² - (x₁-xn)²],
where
xn is the natural length
x₁ is the stretched length
x₂ is also the stretched length when stretched even further than x₁
In this case xn =x₁. So, that means that (x₁-xn) = 0 and (x₂-x₁) = 11 cm or 0.11 m.
Then, substituting the values,
2 J = k (0.11² -0²)
k = 165.29 N/m
Finally, we use the value of k to the Hooke's Law to determine the Force.
F = kΔx = (165.29 N/m)(0.11 m)
F = 18.18 Newtons
Answer:
<h3>How did scientists “discover” Pangea and other supercontinents of the past?</h3>
Nowadays, they can study the geologic record and use radioactive dating, seismic surveys, and other technologies to construct maps of how the world looked at various points in Earth's history.
Answer:
21.8 m/s
Explanation:
At the top of the hill (crest), there are two forces acting on the motorcycle:
- The reaction force of the road, N (upward)
- The force of gravity, mg (downward)
Since the motorcycle is moving by circular motion, the resultant of these forces will give the centripetal force, so:

where the direction of the weight (mg) is equal to that of the centripetal force, and where
m is the mass of the cycle
g = 9.8 m/s^2 is the acceleration of gravity
v is the speed
r = 48.6 is the radius of the hill
The cycle loses contact with the road when the reaction force becomes zero:
N = 0
Substituting into the equation, we therefore find the maximum speed that is allowed for the cycle before losing constact:

It's called texture, meaning how something feels.
Answer:
thanks for the points liar
Explanation: