Balance Chemical equation is as follow,
<span> 3 H</span>₂ <span>(g) + N</span>₂ <span>(g) </span>→<span> 2 NH</span>₃ <span>(g)
According to balanced equation, 3 Molecules (3 moles) of Hydrogen reacts with 1 Molecule of N</span>₂ to produce 2 moles (2 Molecules) of NH₃.
Result:
2 Molecules of Ammonia are produced by reacting 3 molecules of Hydrogen and 1 molecule of Nitrogen.
The study strategy Lauren is using in spreading her study sessions over a period of time is pacing, which helps the student develop a schedule focused on their own study pace.
<h3>Pacing Study Sessions</h3>
This study strategy of distributing the study into short sessions rather than studying the entire content through one long session is more effective in retaining content and learning.
What happens is that Lauren is using mass repetition processing, which can be compared to a longitudinal wave in physics, with spaces in between, concentrating the initial review close to the proof to ensure retention and avoid forgetting.
Through pacing, Lauren achieves greater motivation to carry out her studies in a concentrated and focused way, helping her to retain and preserve knowledge.
The correct answer is:
Find out more information about pacing here:
brainly.com/question/988371
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.
Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>