Answer:
Brainliest pls
Explanation:
The components potassium and sodium have comparable substance properties since they have a similar number of valence electrons
Answer:
7.5 g of hydrogen gas reacts with 50.0 g oxygen gas to form 57.5 g of water.
Explanation:
Here we have the check if the mass of the reactants is equal to the mass of the products.
Reactants

Products

The data is consistent with the law of conservation of matter.
Reactants

Products

The data is not consistent with the law of conservation of matter.
Reactant

Products

The data is not consistent with the law of conservation of matter.
Only the first data is consistent with the law of conservation of matter.
Answer:
The answer to your question is butanal
Explanation:
To name this compound we must consider:
1.- Identify the functional group. The functional group of this molecule is the first carbon to the right and its oxygen.
When carbon is attached to oxygen is a border, this functional group is called Aldehyde.
2.- Count the total number of carbons starting from the right. This molecule has 4 carbons.
3.- Name the compound
An organic molecule with 4 carbons is called butane but change the ending for al, then the name will be butanal
Answer:
Following are the solution to the given points:
Explanation:
In point a, the answer is only ions because of
has a strong electrolyte.
In point b, the answer is the only molecules because of ethanol
, it has a nonelectrolyte.
In point c, the answer is the few ions because of hydrocyanic acid HCN, which has a weak electrolyte.
Answer:
561 g P₂O₃
Explanation:
To find the mass of P₂O₃, you need to (1) convert moles H₃PO₃ to moles P₂O₃ (via mole-to-mole ratio from equation coefficients) and then (2) convert moles P₂O₃ to grams P₂O₃ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the amount of sig figs in the given value.
Atomic Mass (P): 30.974 g/mol
Atomic Mass (O): 15.998 g/mol
Molar Mass (P₂O₃): 2(30.974 g/mol) + 3(15.998 g/mol)
Molar Mass (P₂O₃): 109.942 g/mol
1 P₂O₃ + 3 H₂O -----> 2 H₃PO₃
10.2 moles H₃PO₃ 1 mole P₂O₃ 109.942 g
---------------------------- x -------------------------- x ------------------- = 561 g P₂O₃
2 moles H₃PO₃ 1 mole