It would be 12.4 moles of HCL because you multiply 6.2 by how many moles of HCL in te equation then divide it by how many moles of h2 in the equation so you multiple 6.2 by 2 moles because there’s two moles of HCL which gives you 12.4 then you divide it by one because in the equation there is only 1 mole of H2
Answer:
B. People live longer than they used to
Explanation:
None of the other answers are correct.
Answer: 292.54g of Ag
Explanation:
Cu + 2AgNO3 →Cu(NO3)2 + 2 Ag
mass conc. Of Ag = n x molar Mass
Mass conc. Of Ag = 2 x 108 = 216g
From the equation,
63.5g of Cu produced 216g of Ag
Therefore, 86g of Cu will produce Xg of Ag. i.e
Xg of Ag = (86 x 216)/63.5 = 292.54g
Answer:
Dont use alot of points
Explanation:
people scam like me and ay the wrong answer and get the points :|
Answer : The value of rate of reaction is 
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:

Rate law expression for the reaction is:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
As per question,
a = order with respect to
= 2
b = order with respect to
= 1
Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant = 
[NO] = concentration of NO = 
= concentration of
= 
Now put all the given values in the above expression, we get:


Hence, the value of rate of reaction is 