Velocity means speed, while force means the strength or energy when doing something
Answer:
1. 37.8J
2. 18 Billion Joules, 18 Gigajoules
3. 9.81 Billion Joules, 9.81 Gigajoules
Explanation:
Use the formulas provided,
KE=(1/2)mv^2 and PE=mgh, noting that g=9.81
Explanation:
sorry I can't help u right now
The propagation errors we can find the uncertainty of a given magnitude is the sum of the uncertainties of each magnitude.
Δm = ∑
Physical quantities are precise values of a variable, but all measurements have an uncertainty, in the case of direct measurements the uncertainty is equal to the precision of the given instrument.
When you have derived variables, that is, when measurements are made with different instruments, each with a different uncertainty, the way to find the uncertainty or error is used the propagation errors to use the variation of each parameter, keeping the others constant and taking the worst of the cases, all the errors add up.
If m is the calculated quantity, x_i the measured values and Δx_i the uncertainty of each value, the total uncertainty is
Δm = ∑
| dm / dx_i | Dx_i
for instance:
If the magnitude is a average of two magnitudes measured each with a different error
m =
Δm = |
| Δx₁ + |
| Δx₂
= ½
= ½
Δm =
Δx₁ + ½ Δx₂
Δm = Δx₁ + Δx₂
In conclusion, using the propagation errors we can find the uncertainty of a given quantity is the sum of the uncertainties of each measured quantity.
Learn more about propagation errors here:
brainly.com/question/17175455
Answer:
7.78x10^-8T
Explanation:
The Pointing Vector S is
S = (1/μ0) E × B
at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,
S = (1/μ0) E B
where S, E and B are magnitudes. The average value of the Pointing Vector is
<S> = [1/(2 μ0)] E0 B0
where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)
Also at any instant,
E = c B
where E and B are magnitudes, so it must also be true at the instant of peak values
E0 = c B0
Substituting for E0,
<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²
Solve for B0.
Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)
= 7.79 x10 ^-8 T