I think the answer is c but I’m not sure
<span>You can start with the equations you know
a=v^2/r = (2pi*r/T)^2/r = 4pi^2r/T^2
Radius of earth (R) = 6378.1 km
Time in one day (T) = 86400 seconds
Latitude = 44.4 degrees
If you draw a circle and have the radius going out at a 44.4 degree angle above the center you can then find the r.
r=Rcos(44.4)
r=6378.1cos(44.4)
r= 4556.978198 km or 4556978 m
Now you can plug this value into the acceleration equation from above...
a= 1.8*10^8/7.47*10^9
a= .0241 m/s^2 </span>
Well.....
Gravity from the sun pulls the planets torward it while inertia pulls it outward....but I guess that would be why it orbits sorry if this doesn't help but uh
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps