<span>5.98 x 10^-2 ohms.
Resistance is defined as:
R = rl/A
where
R = resistance in ohms
r = resistivity (given as 1.59x10^-8)
l = length of wire.
A = Cross sectional area of wire.
So plugging into the formula, the known values, including the area of a circle being pi*r^2, gives:
R = 1.59x10^-8 * 3.00 / (pi * (5.04 x 10^-4)^2)
R = (4.77 x 10^-8) / (pi * 2.54016 x 10 ^-7)
R = (4.77 x 10^-8) / (7.98015 x 10^-7)
R = 5.98 x 10^-2 ohms
So that wire has a resistance of 5.98 x 10^-2 ohms.</span>
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
Answer:
A book on a table before it falls.
A yoyo before it is released.
A raised weight.
Explanation:
These are all examples of potential energy. So I hope you can find something that is comparable from the lab.
Answer:
The lowest possible frequency of sound for which this is possible is 1307.69 Hz
Explanation:
From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.
First, we will determine his distance from the second speaker using the Pythagorean theorem
l₂ = √(2.00²+5.00²)
l₂ = √4+25
l₂ = √29
l₂ = 5.39 m
Hence, the path difference is
ΔL = l₂ - l₁
ΔL = 5.39 m - 5.00 m
ΔL = 0.39 m
From the formula for destructive interference
ΔL = (n+1/2)λ
where n is any integer and λ is the wavelength
n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.
Then,
0.39 = (1+ 1/2)λ
0.39 = (3/2)λ
0.39 = 1.5λ
∴ λ = 0.39/1.5
λ = 0.26 m
From
v = fλ
f = v/λ
f = 340 / 0.26
f = 1307.69 Hz
Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.
What website are you using?