Answer:
-0.80985201682
Explanation:
Couldn't you have used Google???
Part a
Answer: NO
We need to calculate the distance traveled once the brakes are applied. Then we would compare the distance traveled and distance of the barrier.
Using the second equation of motion:

where s is the distance traveled, u is the initial velocity, t is the time taken and a is the acceleration.
It is given that, u=86.0 km/h=23.9 m/s, t=0.75 s, 

Since there is sufficient distance between position where car would stop and the barrier, the car would not hit it.
Part b
Answer: 29.6 m/s
The maximum distance that car can travel is 
The acceleration is same, 
The final velocity, v=0
Using the third equation of motion, we can find the maximum initial velocity for car to not hit the barrier:

Hence, the maximum speed at which car can travel and not hit the barrier is 29.6 m/s.
A very small source of light that radiates uniformly in all directions produces an electric field with an amplitude of ܧ at a distance R from the source. What is the amplitude of the magnetic field at a point 2R from the source?
If the distance from the source is doubled. The amplitude of the magnetic field is smaller 4 times.
Explanation:
To find the resultant force subtract the magnitude of the smaller force from the magnitude of the larger force. The direction of the resultant force is in the same direction as the larger force
You might want to do a re-erp on this equation