Answer:
a) Δx = t 0.05 + 0.5
, Δx = 0.5 cm, b) Do not present any problem
Explanation:
The kinematic equation for constant speed is
v = x / t
x = v t
a) the uncertainty can be calculated with
Δx = dx /dv Δv + dx /dt Δt
Δx = t Δv + v Δt
Speed is
v = (50.00 ± 0.05) cm / s
The most common uncertainty for the time of Δt = 0.01 s
We replace
Δx = t 0.05 + 50 0.01
Δx = t 0.05 + 0.5
We must know the time to have an explicit value, if we assume that the measure was t = 1s
Δx = 0.5 cm
b)
Do not present any problem since its value is not very small, we must take as soon as the quantum effects and the velocity are not so high that we must take into account the relativistic effects
<h2>Answer:</h2>
Acceleration= -1.11 m/sec²
<h2>Explanation:</h2>
Date Given to us is
Mass = 150 kg
Time = 1.5 minutes = 90 seconds
Distance = 2500 meters
Initial Velocity = 120 m/s
Final Velocity = 20 m/s
Acceleration = ?
<u>Solution:</u>
By using First Equation of motion
Vf = Vi + at
Putting the values
20 = 120 + a (90)
Subtracting 120 on both sides
20-120 = 120 + a(90) - 120
-100 = 90 a
Dividing both sides by 90
-100/90 = 90 a / 90
-1.11 = a
So the acceleration is -1.11 m/s²
Answer:
Explanation:
The horizontal distance traveled by the projectile is given by the formula

The formula for the time of flight is given by

Case I: when the launch angle is 30°
So, 

Horizontal velocity = u Cos 30 = 0.866 u

Case II: when the launch angle is 60°


Horizontal velocity = u Cos 60 = 0.5 u

By observing the case I and case II, we conclude that
R1 = R2
Horizontal velocity 1 > Horizontal velocity 2
T1 < T2
Yes i think since action force means moving in one direction
<span>the matter is in chemical <span>plasma
</span></span>
<span>Alternatively d<span>)
</span></span>
<span>I hope I was helpfull
</span>