Answer:
Generally, magnets are attracted to objects that are made of the metals iron, nickel, or cobalt. These materials are called ferromagnetic materials. ... When all or most of the domains are aligned in the same direction, the whole object becomes magnetized in that direction and becomes a magnet.
Explanation:
Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:

You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:

you replace this value of v in the equation (1). Also, you replace the values of r and m:

hence, the tension in the string must be T = Fc = 764.41 N
Explanation:
We have,
Mass of an object is 0.5 kg
Force constant of the spring is 157 N/m
The object is released from rest when the spring is compressed 0.19 m.
(A) The force acting on the object is given by :
F = kx

(B) The force is simply given by :
F = ma
a is acceleration at that instant

If they have self motivation or others motivation, they will show their full potential.
Answer:
The magnetic flux through a loop is zero when the B field is perpendicular to the plane of the loop.
Explanation:
Magnetic flux are also known as the magnetic line of force surrounding a bar magnetic in a magnetic field.
It is expressed mathematically as
Φ = B A cos(θ) where
Φ is the magnetic flux
B is the magnetic field strength
A is the area
θ is the angle that the magnetic field make with the plane of the loop
If B is acting perpendicular to the plane of the loop, this means that θ = 90°
Magnetic flux Φ = BA cos90°
Since cos90° = 0
Φ = BA ×0
Φ = 0
This shows that the magnetic flux is zero when the magnetic field strength B is perpendicular to the plane of the loop.