It runs slower <span>as gravity is lower so acceleration due to gravity is smaller</span>
If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>
The answer is "156.6 m/s".
This is how we calculate this;
-N + mg = ma = mv²/r
For "weightlessness" N = 0, so
0 = mg - mv²/r
g - v²/r = 0
v =√( gr)
g = 9.8 and r = 2.5km = 2500 m
v = √(9.8 x 2500)
= 156.6 m/s
Answer:
100 ÷ 9.58 = 10.44 (approximate answer)
Answer:
C). 
Explanation:
As we know that capacitance of a given capacitor is

now we know that energy stored in the capacitor plates

here if all the dimensions of the capacitor plate is doubled
then in that case

here area becomes 4 times on doubling the radius and the distance between the plates also doubles
So new capacitance is now

so capacitance is doubled
now the final energy stored between the plates of capacitor is given as

so the final energy is

