<h3>
Answer:</h3>
3.38 × 10²⁴ molecules CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 5.61 moles CO₂
[Solve] molecules CO₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.37834 × 10²⁴ molecules CO₂ ≈ 3.38 × 10²⁴ molecules CO₂
Answer:
Mn (s) + NiCl2 (aq) → MnCl2 (aq) + Ni
Explanation:
The order of displacement of metals from aqueous solution by another metal is defined by the activity series of metals.
The activity series arranges metals in order of reactivity and increasing electrode potentials. The less negative the electrode potential of a metal is, the less reactive it is and the lower it is found in the activity series.
Nickel has a less negative electrode potential than manganese hence it is displaced from an aqueous solution of its salt by manganese spontaneously.
Answer:
a) V air/day = 8640 L air an adult breaths / day
b) 0.0181 L CO intake a person / day
Explanation:
a) one average person has 12 breaths for min:
in each breath it take an average of 500 mL on air.
⇒ 12 breath / min * 500mL air / breath = 6000 mL air / min
the average air volume per day of a person is:
⇒ Vair/day = 6000 mL air / min * (60 min / h) * ( 24 h / day ) = 8640000 mLair / day * ( L / 1000 mL)
⇒ V air / day = 8640 L / day
b) 2.1 E-6 L CO / L air * 8640 L air / day = 0.0181 L CO / day
Depending on how the design is, The bridge will sway, bounce, or move in some way. If the bridge was too stiff the winds would destroy the bridge and cause it to crumble and fall.
Hope that answer works for you! :)
Answer:
The law of conservation of mass represents a balanced chemical equation.