Salutations!
<span>In a laboratory experiment, John uses a mesh to separate soil particles from water. Which technique of separation is he using?
The technique that John is using is the filtration technique. Filtration is a technique to separate the solid which is insoluble from the liquid. For instance: Sand and water, sand is insoluble, thus it stays in the filter paper, while the water proceeds through the filter paper.
Hope I helped :D</span>
Sediment is solid material that is moved and deposited in a new location. Sediment can consist of rocks and minerals, as well as the remains of plants and animals. It can be as small as a grain of sand or as large as a boulder. Sediment moves from one place to another through the process of erosion.
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
Answer:
Joule - J
Explanation:
As energy is defined via work, the SI unit of energy is the same as the unit of work – the joule (J).
CH4 : H2O
1 : 2
number of moles of H2O = 1.00 x 2
number of moles of H2O = 2.00mol
mass = number of moles x molar mass
mass of H2O = 2.00 x (1 + 1 + 16)
mass of H2O = 36g